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(57) ABSTRACT

Techniques to simulate statistical tests are described. An
apparatus may comprise a simulated data component to gen-
erate simulated data for a statistical test, where statistics of the
statistical test are based on parameter vectors to follow a
probability distribution, a statistic simulator component to
generate statistics for the parameter vectors from the simu-
lated data, each parameter vector represented with a single
point in a grid of points, the statistic simulation component to
distribute portions of the simulated data or simulated statis-
tics across multiple nodes of a distributed computing system
in accordance with a column-wise or column-wise-by-group
distribution algorithm, and a code generator component to
create a computational representation arranged to generate an
approximate probability distribution for each point in the grid
of points from the simulated statistics, the approximate prob-
ability distribution to comprise an empirical cumulative dis-
tribution function (CDF). Other embodiments are described
and claimed.
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GENERATE SIMULATED DATA FOR A STATISTICAL TEST, THE
STATISTICAL TEST BASED ON PARAMETER VECTORS TO
FOLLOW A PROBABILITY DISTRIBUTION OF A KNOWN OR AN
UNKNOWN FORM
802

SIMULATE STATISTICS FOR THE PARAMETER VECTORS
FROM THE SIMULATED DATA WITH A DISTRIBUTED
COMPUTING SYSTEM COMPRISING MULTIPLE NODES EACH
HAVING ONE OR MORE PROCESSORS CAPABLE OF
EXECUTING MULTIPLE THREADS, THE SIMULATION TO
OCCUR BY DISTRIBUTION OF PORTIONS OF THE
SIMULATED DATA ACROSS THE MULTIPLE NODES OF THE
DISTRIBUTED COMPUTING SYSTEM
804

. /

s A
CONTROL TASK EXECUTION ON DISTRIBUTED PORTIONS OF

THE SIMULATED DATA ON EACH NODE OF THE
DISTRIBUTED COMPUTING SYSTEM WITH A VIRTUAL
SOFTWARE CLASS ARRANGED TO COORDINATE TASK AND
SUB-TASK OPERATIONS ACROSS THE NODES OF THE
DISTRIBUTED COMPUTING SYSTEM
806

FIG. 8
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STATISTICAL TEST BASED ON PARAMETER VECTORS TO
FOLLOW A PROBABILITY DISTRIBUTION OF A KNOWN OR AN
UNKNOWN FORM
1202

. /

4 N
SIMULATE STATISTICS FOR THE PARAMETER VECTORS

FROM THE SIMULATED DATA, EACH PARAMETER VECTOR
TO COMPRISE A SINGLE POINT IN A GRID OF POINTS, WITH
A GRID COMPUTING SYSTEM COMPRISING MULTIPLE
NODES EACH HAVING ONE OR MORE PROCESSORS
CAPABLE OF EXECUTING MULTIPLE THREADS, THE
SIMULATION TO OCCUR BY DISTRIBUTION OF PORTIONS OF
THE SIMULATED DATA ACROSS THE MULTIPLE NODES OF
THE GRID COMPUTING SYSTEM IN ACCORDANCE WITH A
COLUMN-WISE OR COLUMN-WISE-BY-GROUP DISTRIBUTION
ALGORITHM
1204
o /

4 N

CREATE A COMPUTATIONAL REPRESENTATION ARRANGED
TO GENERATE AN APPROXIMATE PROBABILITY FUNCTION
FOR EACH POINT IN THE GRID OF POINTS FROM THE
SIMULATED STATISTICS
1206

FIG. 12
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1800

- N
GENERATE SIMULATED DATA FOR A STATISTICAL TEST,
STATISTICS OF THE STATISTICAL TEST BASED ON
PARAMETER VECTORS TO FOLLOW A PROBABILITY
DISTRIBUTION OF A KNOWN OR AN UNKNOWN FORM
1802

SIMULATE STATISTICS FOR THE PARAMETER VECTORS
FROM THE SIMULATED DATA, EACH PARAMETER VECTOR
TO COMPRISE A SINGLE POINT IN A GRID OF POINTS
1804

CALCULATE QUANTILES FOR THE PARAMETER VECTORS
FROM THE SIMULATED DATA
1806

/FITAN ESTIMATED CDF CURVE TO QUANTILES FOR EACH h
POINT IN THE GRID OF POINTS USING A MONOTONIC CUBIC
SPLINE INTERPOLATION TECHNIQUE IN COMBINATION
WITH A TRANSFORM TO SATISFY A DEFINED LEVEL OF
PRECISION
1808

FIG. 18
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2000

4 N\
GENERATE SIMULATED DATA FOR A STATISTICAL TEST,
STATISTICS OF THE STATISTICAL TEST BASED ON
PARAMETER VECTORS TO FOLLOW A PROBABILITY
DISTRIBUTION OF A KNOWN OR AN UNKNOWN FORM
2002

SIMULATE STATISTICS FOR THE PARAMETER VECTORS
FROM THE SIMULATED DATA, EACH PARAMETER VECTOR
TO COMPRISE A SINGLE POINT IN A GRID OF POINTS
2004

- /

4 N

REMOVE SELECTIVE POINTS FROM THE GRID OF POINTS TO
FORM A SUBSET OF POINTS
2006

GENERATE INTERPOLATION SOURCE CODE TO
INTERPOLATE A STATISTIC OF THE STATISTICAL TEST ON
ANY POINT
2008

FIG. 20
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2300

4 N
RECEIVE A COMPUTATIONAL REPRESENTATION ARRANGED
TO GENERATE AN APPROXIMATE PROBABILITY
DISTRIBUTION FOR STATISTICS OF A STATISTICAL TEST, THE
COMPUTATIONAL REPRESENTATION TO INCLUDE A
SIMULATED DATA STRUCTURE WITH INFORMATION FOR
ESTIMATED CUMULATIVE DISTRIBUTION FUNCTION (CDF)
CURVES FOR ONE OR MORE PARAMETER VECTORS OF THE
STATISTICAL TEST, EACH PARAMETER VECTOR TO
COMPRISE A SINGLE POINT IN A GRID OF POINTS
2302

- /

4 N

EVALUATE THE SIMULATED DATA STRUCTURE TO
DETERMINE WHETHER ANY POINTS IN THE GRID OF POINTS
ARE REMOVABLE FROM THE SIMULATED DATA STRUCTURE

GIVEN A TARGET LEVEL OF PRECISION
2304

REDUCE THE SIMULATED DATA STRUCTURE IN
ACCORDANCE WITH THE EVALUATION TO PRODUCE A
REDUCED SIMULATED DATA STRUCTURE HAVING A
SMALLER DATA STORAGE SIZE RELATIVE TO THE
SIMULATED DATA STRUCTURE, THE REDUCED SIMULATED
DATA STRUCTURE TO REDUCE A DATA STORAGE SIZE FOR
THE COMPUTATIONAL REPRESENTATION
2306

FIG. 23



Sheet 25 of 36 US 9,208,131 B2

U.S. Patent Dec. 8, 2015
//3402 2404 3406
TN TN / Inpuitable [
Inrerpolanom Im‘m polanon / N rows /
Gnd Go with | Grid G with | 1 i Fachrow. .
. M points / \\ Npoints /| '\ contains K keys |
\\ T/// . 4 \and O quantiles
y
2408 ‘ 2410
Control //
i Options: | PAGE
. Precision,... algorithm
2412
S
, v -
/ Qutput table 1, N rows.
/ Each row contains K keys, Q explanation ;’/
l errors on quantiles; 1 evaluation criterion, I [
fir parameters, and 1 flag to show if the point \\
" should be included in interpolation Grid G;
v 2414
S 4
Data Operation 4
2416
z
v

Output table 2, o subset of output table 1,

[ comprising the rows that should be included in l

‘L interpolation Grid G, 1
\ Each row contains K keys and F fit parameters | !

A4 2418
e
L

Generate Code

pan \ 2420

/

[ Inter, polatmn
L Grid G, /

FIG. 24



U.S. Patent Dec. 8, 2015 Sheet 26 of 36 US 9,208,131 B2
2502
CAPTAIN: Initialize ouiput .~
table
) 4
CAPTAIN: Jackknife on Gy and| 2°% PARALLEL ADAPTIVE
let P denote all poinls not
neeting the requirements GRID ENHANCEMENT
(PAGE) ALGORITHM
4
2506
GENERAL-CAPTAIN: |/~
MPL Allgathery
2508
CAPTAIN: G;=Gy+P and
update flag
2520
v %5 10 ) 4
CAPTAIN: Evaluate N points ‘ CAPTAIN: G; = G + Vand
on G N update the flug
A
4
GENERAL-CAPTAIN: /2 312
/

MPI_Reduce and MPI_Bcast
the max criterion and the point
V io achieve this criterion

l ‘ 2514

2516

GENERAL-CAPTAIN:
MPFI Beast gDone=1

‘ -—N-—> MPI Bcast gDone=0 and the

2518

GENERAL-CAPTAIN:

point V.

FIG. 25



U.S. Patent Dec. 8, 2015 Sheet 27 of 36 US 9,208,131 B2

2600

\ START
4, 2614
Simulating Statistics ;2,602
Repeat:p=1{toP 7
. .. . / Sby P
Simulate S statistics on poiat p . castics
where §=20,000 and P=# of all potential points o
(or parameter vectors)
2626
\ 4
Generating Quantiles 2 604 ,
Repfzat: p=1twP . . Q by.P
Generate Q quantiles on point p guantiles
where Q=10,001
2618
¥
Fitting CDFs 2606 :
Repeat: p =110 P v FhyP
Fit Q quantiles on point p with at most F cupve =’ curve
parameters : parameters
where F=128
- 2620
2608 ,
Generating C Code Ve 2 Cfile
(1) Use all P points for Grid 2 e 4 H files
(2) Select some special points for Grid 0 2 build script
2622
A
2610 /
Building TK-Extension S tkGrid2.dll
Use SDSGUI to build the iwo DLLs kGrid0.dll
2624
¥
2612 , -
. . , - . Table of # of
Running PAGE algorithm for different levels o /
o 5 g for diffe f — POInLS V.S. ;
precision , .
precision




U.S. Patent Dec. 8, 2015 Sheet 28 of 36 US 9,208,131 B2

2700

| 2702
Select the proper # of .~ ’
1 points !
i 2714
/
Simulating Statistics g 704 ) ' :
Repeat: p=11toB /
. ) o . SbyB
Simulate S statistics on point p ey G
where S=1,000,000 and B=# of selected : ST
points {or parameter vectors)
2716
¥ s
. , ) 2706 -
Generating Quantiles Ve )
Repvear: p=1toB ' ' 4 0 by'B
Generate () guantiles on point p guantiles
where Q=10,001
2718
Fitting CDFs 2708
Repeat: p =1 to B FbyB
Fit O quantiles or point p with at most F .,.,.M CUrve
CUPVE pardmerers parameters
where F=128
2720
¥
2710 ,
) /// ] o
Generating C Code ’ C{ik
! oo ot 2 H files
Use all B poinis . : .
1 build script
¥ 2 722
2712
Building TK-Extension 4 :
7 i L.dl
Use SDSGUL to build the DLL hGrid!.dl

END

FiG. 27



US 9,208,131 B2

Sheet 29 of 36

Dec. 8, 2015

U.S. Patent

4214
SONIPA-d

ossz [

SOMVA ,

22UDINJIU31g
[P2RsSHI§

risc
SOUSUDIS

V&< "OIA

£-7287 auoduo))
LOIDA2UI L) 20UDILIUSIS

7-7eST mauoduoy)
183 ] [DOSUDIS

[-7297 wauoduio))
A]pUv gy vIv(g

0C&C uoyvIddy [poysymiy

OF T WoISASqiS JS ] [DIISHDIS

PIl
1S3, JPOLSIDIS

N ¥ 11 uonoung
1821, [0Insunis
ZET vounqLIsicy
“““““““ dprqpgodd
puixodddy
OS] vonviuasaiday
jouonvindidoy)
AN 018Z
\ 125 VID(]
/ V [P
, A
$-8C8C
Stuat0duio))




U.S. Patent Dec. 8, 2015 Sheet 30 of 36 US 9,208,131 B2

User Interface View 2850

Bat ard Pervoet's Blultiode Blractndd
Change Tenls

FIG. 28B



U.S. Patent Dec. 8, 2015 Sheet 31 of 36 US 9,208,131 B2

2900

- ™
RECEIVE A COMPUTATIONAL REPRESENTATION ARRANGED

T0 GENERATE AN APPROXIMATE PROBABILITY
DISTRIBUTION FOR A STATISTICAL TEST, STATISTICS OF THE
STATISTICALTEST TO FOLLOW A PROBABILITY
DISTRIBUTION OF A KNOWN OR AN UNKNOWN FORM

N S/

/ a
RECEIVE A REAL DATA SET FROM A CLIENT DEVICE, THE
REAL DATA SET TO COMPRISE DATA REPRESENTING AT
LEAST ONE MEASURABLE PHENOMENON OR PHYSICAL
PHENOMENON

- /

- p

GENERATE STATISTICS FOR THE STATISTICAL TEST USING
THE REAL DATA SET ON THE PARAMETER VECTOR
29006

o /

a ™
GENERATE THE APPROXIMATE PROBABILITY DISTRIBUTION
OF THE COMPUTATIONAL REPRESENTATION ON THE

PARAMETER VECTOR
2908

- /

/ ™
GENFERATE A SET OF STATISTICAL SIGNIFICANCE VALUES
FOR THE STATISTICS THROUGH INTERPOLATION USING THE
APPROXIMATE PROBABILITY DISTRIBUTION, THE SET OF
STATISTICAL SIGNIFICANCE VALUES COMPRISING ONE OR
MORE P-VALUES, EACH P-VALUE TO REPRESENT A
PROBABILITY OF OBTAINING A GIVEN TEST STATISTIC FROM
THE REAL DATA SET
2910
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TECHNIQUES TO SIMULATE STATISTICAL
TESTS

RELATED CASES

This application claims the benefit of priority under 35
U.S.C. §119(e) to U.S. Provisional Patent Application No.
61/819,791 titled “Methods and Systems for HPSIMU-
LATE”filed on May 6, 2013, which is hereby incorporated by
reference in its entirety. This application is related to the
following co-pending continuation applications: Techniques
to Provide Significance for Statistical Tests, U.S. application
Ser. No. 14/270,837; Techniques to Provide Significance for
Statistical Tests, U.S. application Ser. No. 14/270,825; Tech-
niques to Perform Data Reduction for Statistical Tests, U.S.
application Ser. No. 14/270,748; Techniques to Manage Vir-
tual Classes for Statistical Tests, U.S. application Ser. No.
14/270,783; and Techniques to Perform Curve Fitting for
Statistical Tests, application Ser. No. 14/270,806.

BACKGROUND

In some cases, a computer system may be used to perform
statistical tests. This decision is normally a function of, in
part, a size of a data set needed to perform a given statistical
test. Even a moderately complex statistical test may require a
massive data set, sometimes on the order of terabytes for
example, to produce sufficiently accurate results.

SUMMARY

The following presents a simplified summary in order to
provide a basic understanding of some novel embodiments
described herein. This summary is not an extensive overview,
and it is not intended to identity key/critical elements or to
delineate the scope thereof. One purpose is to present some
concepts in a simplified form as a prelude to the more detailed
description that is presented later.

Various embodiments are generally directed to techniques
to perform automated statistical testing. Some embodiments
are particularly directed to techniques to determine statistical
significance of test results from a statistical test using a dis-
tributed processing system. In one embodiment, for example,
an apparatus may comprise processor circuitry, and a simu-
lated data component operative on the processor circuitry to
generate simulated data for a statistical test, where statistics
of'the statistical test are based on parameter vectors to follow
a probability distribution. The apparatus may further com-
prise a statistic simulator component operative on the proces-
sor circuitry to generate statistics for the parameter vectors
from the simulated data, each parameter vector represented
with a single point in a grid of points, with a distributed
computing system comprising multiple nodes each having
one or more processors capable of executing multiple threads,
the statistic simulation component to distribute portions of
the simulated data or simulated statistics across the multiple
nodes ofthe distributed computing system in accordance with
a column-wise or column-wise-by-group distribution algo-
rithm. The apparatus may further comprise a code generator
component operative on the processor circuitry to create a
computational representation arranged to generate an
approximate probability distribution for each point in the grid
of points from the simulated statistics, the approximate prob-
ability distribution to comprise an empirical cumulative dis-
tribution function (CDF). Other embodiments are described
and claimed.
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To the accomplishment of the foregoing and related ends,
certain illustrative aspects are described herein in connection
with the following description and the annexed drawings.
These aspects are indicative of the various ways in which the
principles disclosed herein can be practiced and all aspects
and equivalents thereof are intended to be within the scope of
the claimed subject matter. Other features will become appar-
ent from the following detailed description when considered
in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of an automated statistical
test system.

FIG. 2 illustrates an example of a first logic flow for a
simulation subsystem.

FIG. 3 illustrates an example of a first operational environ-
ment.

FIG. 4 illustrates an example of a second operational envi-
ronment.

FIG. 5 illustrates an example of a third operational envi-
ronment.

FIG. 6 illustrates an example of a computing system.

FIG. 7 illustrates an example of a distributed computing
system.

FIG. 8 illustrates an example of a second logic flow for a
simulation subsystem.

FIG. 9 illustrates an example of a third logic flow for a
simulation subsystem.

FIG. 10 illustrates an example of a fourth logic flow for a
simulation subsystem.

FIG. 11 illustrates an example of a fifth logic flow for a
simulation subsystem.

FIG. 12 illustrates an example of a sixth logic flow for a
simulation subsystem.

FIG. 13 illustrates an example of a first simulated data
structure.

FIG. 14 illustrates an example of a fourth operational envi-
ronment.

FIG. 15 illustrates an example of a second simulated data
structure.

FIG. 16 illustrates an example of a fifth operational envi-
ronment.

FIG. 17 illustrates an example of a third simulated data
structure.

FIG. 18 illustrates an example of a seventh logic flow for a
simulation subsystem.

FIG. 19 illustrates an example of a sixth operational envi-
ronment.

FIG. 20 illustrates an example of an eighth logic flow for a
simulation subsystem.

FIG. 21A illustrates an example of a seventh operational
environment.

FIG. 21B illustrates an example of a ninth logic flow for a
simulation subsystem.

FIG. 22 illustrates an example of an eighth operational
environment.

FIG. 23 illustrates an example of a tenth logic flow for a
simulation subsystem.

FIG. 24 illustrates an example of an eleventh logic flow for
a simulation subsystem.

FIG. 25 illustrates an example of a twelfth logic flow for a
simulation subsystem.

FIG. 26 illustrates an example of a thirteenth logic flow for
a simulation subsystem.

FIG. 27 illustrates an example of a fourteenth logic flow for
a simulation subsystem.
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FIG. 28A illustrates an example of a statistical test sub-
system.

FIG. 28B illustrates an example of a user interface view for
a statistical test subsystem.

FIG. 29 illustrates an example of a logic flow for a statis-
tical test subsystem.

FIG. 30 illustrates an example of a centralized system.

FIG. 31 illustrates an example of a distributed system.

FIG. 32 illustrates an example of a computing architecture.

FIG. 33 illustrates an example of a communications archi-
tecture.

FIG. 34 illustrates an example of an article of manufacture.

DETAILED DESCRIPTION

Instatistics, a result is considered statistically significant if,
for example, it has been predicted as unlikely to have
occurred by chance alone, according to a pre-determined
threshold probability, referred to as a significance level. A
statistical test is used in determining what outcomes of a study
would lead to a rejection of a null hypothesis for a pre-
specified level of significance. A null hypothesis refers to a
default position, such as there is no relationship between two
measured phenomena, for example, that a potential medical
treatment has no effect. Statistical significance is instructive
in determining whether results contain enough information to
cast doubt on the null hypothesis.

Various embodiments described and shown herein are gen-
erally directed to techniques to perform enhanced automated
statistical testing. Some embodiments are particularly
directed to an automated statistical test system arranged to
determine statistical significance of test results from a statis-
tical test. In one embodiment, for example, the automated
statistical test system may include a simulation subsystem
and a statistical test subsystem. The simulation subsystem
may, among other features, generate an approximate prob-
ability distribution for the statistics of a statistical test. The
statistical test subsystem may, among other features, generate
statistical significance values for results of a statistical test
using an approximate probability distribution. Embodiments
are not limited to these subsystems.

With general reference to notations and nomenclature used
herein, the detailed descriptions which follow may be pre-
sented in terms of program procedures executed on a com-
puter or network of computers. These procedural descriptions
and representations are used by those skilled in the art to most
effectively convey the substance of their work to others
skilled in the art.

A procedure is here, and generally, conceived to be a self-
consistent sequence of operations leading to a desired result.
These operations are those requiring physical manipulations
of physical quantities. Usually, though not necessarily, these
quantities take the form of electrical, magnetic or optical
information capable of being stored, transferred, combined,
compared, and otherwise manipulated. It proves convenient
at times, principally for reasons of common usage, to refer to
this “information” as bits, values, elements, symbols, charac-
ters, terms, numbers, or the like. It should be noted, however,
that all of these and similar terms are to be associated with the
appropriate physical quantities and are merely convenient
labels applied to those quantities.

Further, the manipulations performed are often referred to
in terms, such as adding or comparing, which are commonly
associated with mental operations performed by a human
operator. No such capability of a human operator is necessary,
or desirable in most cases, in any of the operations described
herein which form part of one or more embodiments. Rather,
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the operations are machine operations. Useful machines for
performing operations of various embodiments include gen-
eral purpose digital computers or similar devices.

Various embodiments also relate to apparatus or systems
for performing these operations. This apparatus may be spe-
cially constructed for the required purpose or it may comprise
a general purpose computer as selectively activated or recon-
figured by a computer program stored in the computer. The
procedures presented herein are not inherently related to a
particular computer or other apparatus. Various general pur-
pose machines may be used with programs written in accor-
dance with the teachings herein, or it may prove convenient to
construct more specialized apparatus to perform the required
method steps. The required structure for a variety of these
machines will appear from the description given.

Reference is now made to the drawings, wherein like ref-
erence numerals are used to refer to like elements throughout.
In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding thereof. It may be evident, however,
that the novel embodiments can be practiced without these
specific details. In other instances, well known structures and
devices are shown in block diagram form in order to facilitate
a description thereof. The intention is to cover all modifica-
tions, equivalents, and alternatives consistent with the
claimed subject matter.

FIG. 1 illustrates a block diagram for an automated statis-
tical test system 100. In one embodiment, the automated
statistical test system 100 may be implemented as a computer
system having a simulation subsystem 120 and a statistical
test subsystem 140. The subsystems 120, 140 may each be
implemented as a separate or integrated software application
comprising one or more components, such as components
122-a as shown for the simulation subsystem 120 in FIG. 1.
Although the automated statistical test system 100 shown in
FIG. 1 has a limited number of elements in a certain topology,
it may be appreciated that the automated statistical test sys-
tem 100 may include more or less elements in alternate
topologies as desired for a given implementation.

It is worthy to note that “a” and “b” and “c” and similar
designators as used herein are intended to be variables repre-
senting any positive integer. Thus, for example, if an imple-
mentation sets a value for a=4, then a complete set of com-
ponents 122-a may include components 122-1, 122-2, 122-3
and 122-4. The embodiments are not limited in this context.

In various embodiments, portions of the automated statis-
tical test system 100 may be implemented as software com-
ponents comprising computer executable instructions imple-
mented in a given programming language. In one
embodiment, for example, the computer executable instruc-
tions may be implemented in a specific programming lan-
guage as developed by SAS® Institute, Inc., Cary, N.C. For
instance, the computer executable instructions may be imple-
mented in a procedure referred to herein as HPSIMULATE,
which is a procedure suitable for execution within a SAS
programming language and computing environment. In such
embodiments, the computer executable instructions may fol-
low syntax and semantics associated with HPSIMULATE, as
described in more detail with reference to FIG. 34, infra.
However, embodiments are not limited to HPSIMULATE,
and further, do not need to necessarily follow the syntax and
semantics associated with HPSIMULATE. Embodiments are
not limited to a particular type of programming language.

As shown in FIG. 1, the automated statistical test system
100 may include two subsystems, a simulation subsystem 120
and a statistical test subsystem 140. The simulation sub-
system 120 may generate a computational representation 130
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arranged to generate approximate probability distribution
132 for a statistical test 114. The statistical test subsystem 140
may generate statistical significance values for results of the
statistical test 114 using an approximate probability distribu-
tion 132 generated by the computational representation 130.

The simulation subsystem 120 may be generally arranged
to perform a statistical simulation for a variety of statistical
tests 114. The statistical test 114 may include any known
statistical test as represented by the statistical test function
112. Some examples for the statistical test 114 may include
without limitation median test, mode test, R test, means test,
t-test for single means, independent t-test, dependent t-test,
Wald-Wolfowitz runs test, Kolmogorov Smirnov test, Mann-
Whitney U test, sign test, Wilcoxon matched pairs test, alter-
native to one-way between-groups analysis of variance
(ANOVA) test, one-way ANOVA test, Kruskal-Wallis
ANOVA test, repeated measures ANOVA test, Friedman
ANOVA test, Kendall Concordance test, Pearson product
moment correlation test, Spearman correlation test, linear
regression test, data mining decision tree tests, neural net-
work tests, nonlinear estimation test, discriminant analysis
test, predictor importance test, KPSS unit root test, Shin
cointegration test, ERS unit root test, Bai and Perron’s mul-
tiple structural change tests (e.g., maxF, UDmaxF, WDmaxF,
supF,, 1, etc.), Im, Pesaran and Shin (2003) panel unit root
test, Bhargava, Franzini and Narendranathan (1982) test, gen-
eralized Durbin-Watson statistics, generalized Berenblut-
Webb statistics for first-order correlation in a fixed effects
model, Gourieroux, Holly and Monfort (1982) test for ran-
dom effects (two way), Johansen’s cointegration rank test,
and many others. Embodiments are not limited in this context.

The simulation subsystem 120 may be arranged to generate
an approximate probability distribution, probability distribu-
tion function, or distribution function (collectively referred to
herein as an “approximate probability distribution™) for the
statistics of a statistical test 114. A probability distribution
assigns a probability to each measurable subset of possible
outcomes of a random experiment, survey, or procedure of
statistical inference. A probability distribution can either be
univariate or multivariate. A univariate distribution gives the
probabilities of a single random variable taking on various
alternative values. A multivariate distribution gives probabili-
ties of a random vector (e.g., a set of two or more random
variables) taking on various combinations of values.

More particularly, a statistical test 114 is normally based on
a “test statistic.” In statistical hypothesis testing, a hypothesis
test is typically specified in terms of a test statistic, which is a
function of the sample. A test statistic is considered as a
numerical summary of a data-set that reduces the data to one
value that can be used to perform a hypothesis test. In general,
a test statistic is selected or defined in such a way as to
quantify, within observed data, behaviors that would distin-
guish the null from the alternative hypothesis where such an
alternative is prescribed, or that would characterize the null
hypothesis if there is no explicitly stated alternative hypoth-
esis.

An important property of a test statistic is that its sampling
distribution under the null hypothesis must be calculable,
either exactly or approximately, which allows p-values to be
calculated. A test statistic is a function of associated data and
a model. Under the assumptions of a null hypothesis and the
model the test statistic has an associated “sampling distribu-
tion.” A sampling distribution refers to a probability distribu-
tion for values of the test statistic over hypothetical repeated
random samples of the data, for random data samples having
the probability distribution assumed for the data by the model
and null hypothesis.

10

15

20

25

30

35

40

45

50

55

60

65

6

Inone embodiment, for example, the simulation subsystem
120 attempts to determine and approximate a sampling dis-
tribution of a test statistic under an assumed null hypothesis to
generate an approximate probability distribution. The simu-
lation subsystem 120 determines an approximate probability
distribution for a given set of statistics of a statistical test 114.
It is worthy to note that in some embodiments when an
approximate probability distribution is said to be associated
with a given statistical test 114, it implies that the approxi-
mate probability distribution is associated with a set of sta-
tistics for the statistical test 114 rather than the statistical test
114 alone.

In various embodiments, a probability distribution may
have a “known form” and/or an “unknown form.” A probabil-
ity distribution of a “known form” means that the analytical
formula of the cumulative distribution function (CDF) of the
distribution can be efficiently computed, for example, the
CDF is a closed-form expression, or the CDF can be well
approximated in a numerical method. A probability distribu-
tion of an “unknown form” means that the analytical formula
of the CDF of the distribution is unavailable, or cannot be
efficiently computed or approximated by any known numeri-
cal method. Accordingly, the probability distribution of an
“unknown form” is to be evaluated through simulation.

In various embodiments, the simulation subsystem 120
may be arranged to generate a probability distribution for the
statistics of a given statistical test having a known form and/or
an unknown form. In one embodiment, for example, a prob-
ability distribution for the statistics of a given statistical test
114 is a known form, such as a Gaussian distribution, a
log-normal distribution, a discrete uniform distribution, a
continuous uniform distribution, and many others. However,
the statistics of some statistical tests 114 may follow a prob-
ability distribution of unknown form. In such cases, a prob-
ability distribution of unknown form may be approximated
through empirical measure. An empirical measure is a ran-
dom measure arising from a particular realization of a (usu-
ally finite) sequence of random variables. As such, in another
embodiment, the simulation subsystem 120 may generate an
approximate probability distribution 132 for the statistics of a
given statistical test 114 where a probability distribution for
the statistics of the statistical test is an unknown form. This
may be particularly useful in those cases where the statistics
of a statistical test 114 follow a probability distribution for
which no known mathematical formula is available to com-
pute its values and which therefore can only be evaluated
through simulation.

The simulation subsystem 120 may receive as input a simu-
lated data function 110 arranged to generate simulated data
for a given statistical test 114. The simulation subsystem 120
may further receive as input a statistical test function 112
arranged to perform the statistical test 114. The simulation
subsystem 120 may execute the simulated data function 110
to generate simulated data for the statistical test 114, and the
statistical test function 112 to simulate statistics from the
simulated data, and create a computational representation
130 to generate an approximate probability distribution 132
from the simulated statistics. The computational representa-
tion 130 may, for example, be used by another software
program at some future time to perform an actual statistical
test 114, such as a statistical test subsystem 140. The statis-
tical test subsystem 140 may, for example, perform the sta-
tistical test 114 on actual data sets (e.g., organization data,
business data, enterprise data, etc.), and generate statistical
significance values utilizing one or more approximate prob-
ability distributions 132 generated by the computational rep-
resentation 130.
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Examples for an approximate probability distribution 132
may include without limitation an empirical distribution
function or empirical CDF. An empirical CDF is a cumulative
distribution function associated with an empirical measure of
a sample. The simulation subsystem 120 may generate other
approximate probability distributions 132 as well using the
techniques described herein. The embodiments are not lim-
ited in this context.

The simulation subsystem 120 may generate an approxi-
mate probability distribution 132 for the statistics of a statis-
tical test 114 where an actual probability distribution for the
statistics of the statistical test 114 is of a known or unknown
form. For example, when a statistical test 114 has a probabil-
ity distribution of a known form, the approximate probability
distribution 132 may be useful to evaluate or refine the known
probability function. In another example, when the statistics
of a statistical test 114 follow a probability distribution of an
unknown form, the approximate probability distribution 132
may be useful to generate statistical significance values for a
statistical test 114. The latter example may be particularly
useful in those cases where a statistical test 114 has a level of
complexity that makes manual estimation of an approximate
probability distribution 132 untenable.

The simulated subsystem 120 may comprise a simulated
data component 122-1. The simulated data component 122-1
may be generally arranged to generate simulated data for a
statistical test 114 utilizing the simulated data function 110.
The simulated data function 110 may be stored as part of a
software library. In this way, the simulated data component
122-1 may generate many different types of simulated data
for a given statistical test 114, without having to alter or
modify instructions for the simulated data component 122-1.
Alternatively, the simulated data function 110 may be inte-
grated with the simulated data component 122-1. The simu-
lated data component 122-1 may be described in more detail
with reference to FIG. 3, infra.

The simulated subsystem 120 may comprise a statistic
simulator component 122-2. The statistic simulator compo-
nent 122-2 may be generally arranged to simulate statistics
for the statistical test 114 from the simulated data utilizing the
statistical test function 112. As with the simulated data func-
tion 110, the statistical test function 112 may be stored as part
of a software library. In this way, the statistic simulator com-
ponent 122-2 may simulate many different types of statistical
tests 114 with a given set of simulated data, without having to
alter or modify instructions for the statistic simulator compo-
nent 122-2. Alternatively, the statistical test function 112 may
be integrated with the statistical simulator component 122-2.
The statistic simulator component 122-2 may be described in
more detail with reference to FIG. 4, infra.

The simulated data function 110 and the statistical test
function 112 may be dependent or independent with respect
to each other. In one embodiment, the simulated data function
110 and the statistical test function 112 may be complemen-
tary, where a simulated data set is specifically tuned for a
given statistical test 114. In one embodiment, the simulated
data function 110 and the statistical test function 112 may be
independently designed.

The statistic simulator component 122-2 may include a
simulation control engine 124. In one embodiment, the simu-
lation control engine 124 may be generally arranged to con-
trol simulation operations across a distributed computing sys-
tem. A distributed computing system may comprise, for
example, multiple nodes each having one or more processors
capable of executing multiple threads, as described in more
detail with reference to FIG. 6, infra.
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The use of a distributed computing system to generate
simulated statistics may be useful for statistical tests 114 that
need a larger data set. While simulating a statistic for one
specific parameter vector may be relatively easy, simulating
statistics for all possible parameter vectors could be compu-
tational intensive. As such, a distributed computing system
may reduce simulation time.

The simulation control engine 124 may distribute portions
of'simulated data or simulated statistics across multiple nodes
of the distributed computing system in accordance with a
column-wise or a column-wise-by-group distribution algo-
rithm, for example. The use of a distributed computing sys-
tem in general, and the column-wise or column-wise-by-
group distribution algorithm in particular, substantially
reduces an amount of time needed to perform the simulation.
In some cases, an amount of time needed to perform a simu-
lation may be reduced by several orders of magnitude (e.g.,
years to days or hours), particularly with larger data sets (e.g.,
terabytes) needed for even moderately complex statistical
tests. The simulation control engine 124 may be described in
more detail with reference to FIG. 5, infra.

The simulation subsystem 120 may comprise a code gen-
erator component 122-3. The code generator component
122-3 may be generally arranged to create a computational
representation 130. The computational representation 130
may be arranged to generate an approximate probability dis-
tribution 132 for the statistics of a statistical test 114 on a
parameter vector from the simulated statistics. The code gen-
erator component 122-3 may be described in more detail with
reference to FIG. 19, infra.

The computational representation 130 may be created as
any software component suitable for execution by a processor
circuit. Examples for the computational representation 130
may include without limitation a function, procedure,
method, object, source code, object code, assembly code,
binary executable file format, simple executable (COM) file,
executable file (EXE), portable executable (PE) file, new
executable (NE) file, a dynamic-link library (DLL), linear
executable (LX) file, mixed linear executable (LE) file, a
collection of LE files (W3)file, a compressed collection of LE
files (W4) file, or other suitable software structures. The
computational representation 130 may be generated in any
computer programming language. Embodiments are not lim-
ited in this context.

The simulated subsystem 120 may comprise an evaluation
component 122-4. The evaluation component 122-4 may be
generally arranged to evaluate a computational representa-
tion 130 for performance. For instance, the evaluation com-
ponent 122-4 may receive a computational representation 130
arranged to generate an approximate probability distribution
132 for the statistics of the statistical test 114 on a parameter
vector from the simulated statistics. The computational rep-
resentation 130 may include a simulated data structure with
information for one or more estimated CDF curves. The
evaluation component 122-4 may perform at least two kinds
of evaluations on the computational representation 130.

A first type of evaluation is a performance evaluation. The
direct evaluation attempts to determine whether the compu-
tational representation 130 performs according to a defined
set of criteria. If the computational representation 130 does
not meet one or more of the defined set of criteria, the evalu-
ation component 122-4 may determine whether points should
be added to the simulated data structure to improve perfor-
mance of the computational representation 130.

A second type of evaluation is a reduction evaluation. As
with the performance evaluation, the reduction evaluation
may attempt to determine whether the computational repre-
sentation 130 performs according to a defined set of criteria.
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If the computational representation 130 does meet one or
more of the defined set of criteria, the evaluation component
122-4 may further determine whether points can be removed
from the simulated data structure to give a same or similar
level of performance. Removing points from the simulated
data structure may reduce a data storage size for the simulated
data structure, and a data storage size for a corresponding
computational representation 130 having the reduced simu-
lated data structure.

When reduction is possible, the evaluation component
122-4 may attempt to reduce a data storage size for a compu-
tational representation 130. The evaluation component 122-4
may evaluate the simulated data structure to determine
whether any points in the grid of points is removable from the
simulated data structure given a target level of precision. The
evaluation component 122-4 may reduce the simulated data
structure in accordance with the evaluation to produce a
reduced simulated data structure, the reduced simulated data
structure to reduce a data storage size for the computational
representation 130. In some cases, the reduced simulated data
structure may be obtained by lowering a level of precision for
the reduced simulated data structure relative to the original
simulated data structure. The evaluation component 122-4
may be described in more detail with reference to FIG. 22,
infra.

Included herein is a set of flow charts representative of
exemplary methodologies for performing novel aspects of the
disclosed architecture. While, for purposes of simplicity of
explanation, the one or more methodologies shown herein,
for example, in the form of a flow chart or flow diagram, are
shown and described as a series of acts, it is to be understood
and appreciated that the methodologies are not limited by the
order of acts, as some acts may, in accordance therewith,
occur in a different order and/or concurrently with other acts
from that shown and described herein. For example, those
skilled in the art will understand and appreciate that a meth-
odology could alternatively be represented as a series of inter-
related states or events, such as in a state diagram. Moreover,
not all acts illustrated in a methodology may be required for a
novel implementation.

FIG. 2 illustrates one example of a logic flow 200. The
logic flow 200 may be representative of some or all of the
operations executed by one or more embodiments described
herein, such as the simulation subsystem 120 of the auto-
mated statistical test system 100.

In the illustrated embodiment shown in FIG. 2, the logic
flow 200 may generate simulated data for a statistical test, the
statistics of the statistical test based on parameter vectors to
follow a probability distribution of a known or unknown form
at block 202. For example, the simulated data component
122-1 may generate simulated data for a statistical test 114,
while the statistics of the statistical test 114 based on param-
eter vectors follow a probability distribution of a known or
unknown form. The simulated data component 122-1 may
generate the simulated data with a simulated data function
110. In one embodiment, for example, the simulated data
function 110 may be designed to generate simulated data for
a multiple structural change (maxF) test.

The logic flow 200 may simulate statistics for the param-
eter vectors from the simulated data, each parameter vector to
be represented with a single point in a grid of points at block
204. For example, the statistic simulator component 122-2
may receive simulated data from the simulated data compo-
nent 122-1, and simulate statistics for a statistical test 114
with a statistical test function 112. In one embodiment, for
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example, the statistical test function 112 may be designed to
implement a multiple structural change (maxF) test.

The statistic simulator component 122-2 may simulate sta-
tistics for one or more parameter vectors of the statistical test,
each parameter vector to comprise a single point in a grid of
points. The statistic simulator component 122-2 may simulate
statistics for all given parameter vectors (p) for a statistical
test (T) from the simulated data. The statistics of the statistical
test T based on a given parameter vector p follow some
probability distribution (D). The simulation subsystem 120
may approximate D with simulation. For any given parameter
vector p, the statistic simulator component 122-2 can ran-
domly draw a sample X={X,},_,”¥ from D and construct an
approximate probability distribution 132 in the form of an
empirical CDF T(p, x). The empirical CDF T(p, x) may have
a level of precision as measured by a Kolmogorov-Smirnov
statistic shown in Equation (1) as follows:

Wsup|T(p, x)=T(p, x)| ~K Equation (1)

where T (p, X) represents a true unknown CDF, and distribu-
tion K is a Kolmogorov distribution and a table of the distri-
bution shows K(3) of almost 1. In accordance with Equation
(1), the empirical CDF T(p, x) may have a precision of
approximately 1//N and in almost all cases below 34N,
where N is the sample size, or the number of simulated
statistics, for the given parameter vector p. For example,
when N=1,000,000, the precision is about 0.001.

As the statistic simulator component 122-2 may utilize
various interpolation techniques to generate approximate
probability distributions 132 for one or more parameter vec-
tors for a statistical test 114, each parameter vector may be
referred to as a “point” in a grid of points (M) used for
interpolation. In this context, for example, the term “point” is
a mathematical point within a defined problem space. In one
embodiment, for instance, the problem space may comprise a
“parameter space” for a statistical test 114, with the parameter
space made up of a given set of parameter vectors for the
statistical test 114. In other words, a specific value of a param-
eter vector is a point in the “parameter space” of a mathemati-
cal problem. If elements of one or more parameter vectors
(e.g., the parameters of the problem) are plotted on Cartesian
coordinates, then the parameter vector may be mapped to a
point on a graph in a conventional manner.

The logic flow 200 generates quantiles for each point in the
grid of points at block 208. For example, the statistic simula-
tor component 122-2 may generate quantiles for each point in
the grid of points. Quantiles may refer to data values taken at
regular intervals from the cumulative distribution function
(CDF) of a random variable. The data values may mark
boundaries between consecutive data subsets of an ordered
set of data.

The logic flow 200 involves fitting an estimated CDF curve
for each point in the grid of points independently from other
points in the grid of points using a number of curve param-
eters to provide a given level of precision at block 210. For
example, the statistic simulator component 122-2 may fit an
estimated CDF curve for each point in the grid of points
independently from other points in the grid of points using a
number of curve parameters to provide a given level of pre-
cision. Fitting an estimated CDF curve for each point inde-
pendently can significantly reduce computational resources
needed for curve-fitting operations. For instance, in a simple
case, the dimension of the point, p, is only 1; that is to say, p
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is a real number. Rather than fitting estimated CDF curves for
all points in the grid of points simultaneously to build an
actual three-dimensional surface, (p, X, T(p,x)), the statistic
simulator component 122-2 fits an estimated curve, (x, T(p,
X)), for each point p in sequence or parallel, and then com-
bines the estimated curves to form an approximate three-
dimensional surface. Although the approximate three-
dimensional surface may have a reduced level of precision
relative to the actual three-dimensional surface, curve-fitting
operations are greatly accelerated and may consume fewer
computational resources. Reducing latency may be of par-
ticular importance with larger data sets or multi-dimensional
parameter vectors needed for some statistical tests.

The statistic simulator component 122-2 may fit an esti-
mated CDF curve for each point in the grid of points using
various types of curve-fitting techniques. For instance, the
statistic simulator component 122-2 may utilize, for example,
a Gaussian mixture model (EM algorithm), a Bernstein-Poly-
nomials mixture model (EM algorithm), or a monotone cubic
spline technique. In one embodiment, the statistic simulator
component 122-2 may perform curve-fitting utilizing a
monotonic cubic spline interpolation technique with beta
transformation, as described in more detail with reference to
FIG. 18, infra. Embodiments are not limited to this example.

The logic flow 200 may generate a computational repre-
sentation as source code to interpolate an estimated CDF
curve for any point of the statistical test at block 212. For
example, the code generator component 122-3 may generate
a computational representation 130 as source code to inter-
polate an estimated CDF curve for any given point of the
statistical test 114. In one embodiment, the point may be
within the grid of points. In one embodiment, the point may
be outside the grid of points. In one embodiment, the point
may be entirely disassociated from the grid of points.

In one embodiment, the computational representation 130
may be generated in computer programming language, such
as C or C++ for example. However, embodiments are not
limited to these particular computer programming languages.

The logic flow 200 may reduce a data storage size for the
computation representation at block 214. For example, the
evaluation component 122-4 may reduce a data storage size
for the computational representation 130 through reduction
of various components of the computational representation
130, with a corresponding loss in precision. In one embodi-
ment, the data reduction operations may be described in more
detail with reference to FIG. 22, infra. Embodiments are not
limited to this example.

The logic flow 200 involves controlling task execution of a
distributed computing system using a virtual software class at
block 216. For example, the simulation control engine 124 of
the statistic simulator component 122-2 may control task
execution of a distributed computing system using a virtual
software class. In addition, a virtual software class may also
be used for other operations of the logic flow 200, including
without limitation blocks 202, 208, 210, 212 and 214, for
example. A virtual software class may be described in more
detail with reference to FIG. 5, infra.

FIG. 3 illustrates an example of an operational environ-
ment 300. The operational environment 300 may illustrate
operation of portions of the automated statistical test system
100, such as the simulated data component 122-1, for
example.

As shown in FIG. 3, the simulated data component 122-1
may have a simulated data generator 320. In addition to, or as
an alternative of, receiving a simulated data function 110, the
simulated data generator 320 may receive a structured input
file 310 and a randomizer function 312. The structured input
file 310 may have definitions to generate simulated data 330.
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The randomizer function 312 may generate seeds or random
numbers (e.g., a random number generator) for the simulated
data 330. The simulated data generator 320 may utilize the
simulated data function 110, the structured input file 310,
and/or the randomizer function 312 to generate the simulated
data 330. The simulated data generator 320 may store the
simulated data 330 in a simulation database 340. In one
embodiment, for example, the simulated data 330 may be
stored in the simulation database 340 in accordance with
definitions provided by the structured input file 310.

The structured input file 310 may generally comprise one
or more input files with data generation specifications and
definitions useful for the simulated data component 122-1 to
automatically producing simulated data 330. The specifica-
tions and definitions may be in addition to, or replacement of,
specifications and definitions used by the simulated data
function 110. The structured input file 310 may utilize any
format as long as the input files are structured in a known and
well-defined manner. The structured input file 310 provides
information about the simulated data 330 and the simulation
database 340, among other types of information. For instance,
the structured input file 310 may provide information about a
computing environment in which the simulation subsystem
120 will run, a database to store the simulated data 330, data
structures for the simulated data 330, table space (e.g., table,
columns, rows, indices, etc.), the type of simulated data 330
required by each column of output tables in the simulation
database 340, how to generate each type of simulated data
330, relationships between columns in a same table and col-
umns in different tables, and other information pertinent to
generating simulated data 330.

A particular number of data sets for the simulated data 330
may be dependent, in part, on a particular type of statistical
test 114. In one embodiment, for example, assume the statis-
tical test function 112 is designed to implement a multiple
structural change (maxF) test. For example, in order to have a
3-digit precision, the simulated data generator 320 may need
to generate a sufficient number of data sets to calculate
approximately 1,000,000 statistics for each point in a defined
grid of points.

FIG. 4 illustrates an example of an operational environ-
ment 400. The operational environment 400 may illustrate the
operation of portions of the automated statistical test system
100, such as the statistic simulator component 122-2. for
example.

As shown in FIG. 4, the statistic simulator component
122-2 may include a simulated statistic generator 420. The
simulated statistic generator 420 may receive simulated data
330 generated by the simulated data component 122-1, and
use (e.g., call) the statistical test function 112 to generate a set
of simulated statistics 430 for a statistical test 114 with the
simulated data 330. As with the simulated data 330, the simu-
lated statistics 430 may be stored in the simulation database
340, or a separate database entirely.

The statistic simulator component 122-2 may generate the
simulated statistics 430 in different ways using various types
of computer systems, including a centralized computing sys-
tem and a distributed computing system. The statistic simu-
lator component 122-2 may specify and control a particular
computer system used for simulation through the simulation
control engine 124.

The statistic simulator component 122-2 may generate the
simulated statistics using an exemplary procedure, as fol-
lows:
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PROC HPSIMULATE
data=scbpParms /* table containing simulation parameters */
datadist=(COPYTONODES);
MODULE name=SCBP
ext=tkscbp /* TK Extension to plug-in */
var=(T mmax NQ Q1 Q20 NEPS EPS1 - EPS50) /* variables */
task=0 /* Task : Simulation */
taskParmN=(1000000 /*number of replications*/
6000000 /*random seed */ );
OUTPUT out=scbpSimulation;
PERFORMANCE nnodes=200 nthreads=6;
RUN.

The statistic simulator component 122-2 is not limited to this
example.

FIG. 5 illustrates an example of an operational environ-
ment 500. The operational environment 500 may illustrate
operation of portions of the automated statistical test system
100, such as the simulation control engine 124 of the statis-
tical simulator component 122-2, for example.

As shown in FIG. 5, the simulation control engine 124 may
include a message interface 520. The message interface 520
may receive the simulated data 330 from the simulated data
component 122-1, or retrieve the simulated data 330 from the
simulation database 340, and generate a simulation request
530. The simulation request 530 may be a request to generate
simulated statistics 430 from the simulated data 330 using the
statistical test function 112.

The simulation request 530 may include various types of
information about the statistical test 114, as well as informa-
tion about a computing environment suitable for generating
the simulated statistics 430. Examples of computing environ-
ment information may include without limitation a name,
description, speed requirements, power requirements, oper-
ating system requirements, database requirements, comput-
ing parameters, communications parameters, security param-
eters, and so forth. Depending on a particular statistical test
114, the computing environment information may specify a
configuration for a computer system having different combi-
nations of computation resources, such as a number of serv-
ers, server types, processor circuits, processor cores, process-
ing threads, memory units, memory types, and so forth. For
example, the computer environment information may request
a single computer with a single processor and a single thread,
a single computer with a single processor and multiple
threads, a single computer with multiple processors (or pro-
cessing cores) each with a single thread, a single computer
with multiple processors (or processing cores) each with mul-
tiple threads, multiple computers each with a single processor
and a single thread, multiple computers each with a single
processor and multiple threads, multiple computers with mul-
tiple processors each with a single thread, and multiple com-
puters with multiple processors each with multiple threads, or
any combination thereof.

A computing environment for a statistical test simulation
may be particularly important when a simulation for a par-
ticular statistical test needs a larger set of data, such as in the
gigabyte or terabyte range. Enumeration of all possible points
could lead to a relatively large grid of points M. Continuing
with our previous example of a multiple structural change
(maxF) test, in order to have 3-digit precision, the simulated
data generator 320 may need to generate a sufficient number
of'data sets to simulate approximately 1,000,000 statistics for
each point in a defined grid of points. Assuming a number of
variables is limited to less than 20, a possible number of
structural changes is limited to less than 19, and a number of
observations is 2,000 to approximate an asymptotic case, a
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defined grid of points for the maxF test would contain
approximately 103,780 points (parameter vectors). To simu-
late 1,000,000 statistics for each of 103,780 points on a single
processor, at roughly 0.001 seconds per statistic, would take
approximately 1,200 days. Alternatively, executing 1,000,
000 statistics for each of 103,780 points on 1200 processors,
at roughly 0.001 seconds per statistic, would take approxi-
mately 1 day. For a computational task of this size, the mes-
sage interface 520 may generate a simulation request 530
with computer environment information specifying a need for
distributed computations in a distributed computing environ-
ment having multiple computers with multiple processors
each with multiple threads operating in a parallel processing
manner.

In one embodiment, the simulation control engine 124 may
distribute portions of the simulated data 330 across various
parts of a distributed computing environment, and control
generation of simulated statistics 430 within the distributed
computing environment, through use of one or more software
classes 522-v. In object-oriented programming, a software
class may be referred to as an extensible template for creating
objects, providing initial values for state (e.g., member vari-
ables) and implementations of behavior (e.g., member func-
tions, methods). In many computer programming languages,
a class name may be used as a name for a class (e.g., the
template itself), the name for the default constructor of the
class (e.g., a subroutine that creates objects), and as the type
of'objects generated by the type. Typically, when an object is
created by a constructor of the class, the resulting object may
be called an instance of the class, and the member variables
specific to the object may be called instance variables, to
contrast with the class variables shared across the entire class.

As shown in FIG. 5, the software classes 522-v are specifi-
cally designed to perform simulations of a statistical test 114
in a distributed computing environment. The software classes
522-v may include at least a base software class 522-1 for a
statistical test 114 and a virtual software class 522-2 for
managing the simulation of a statistical test. In one embodi-
ment, for example, a base software class 522-1 may be imple-
mented as a TK-extension class. In one embodiment, for
example, a virtual software class 522-2 may be implemented
as a virtual TK-extension class (TKVRT). Embodiments,
however, are not limited to these examples.

The base software class 522-1 may include an extensible
template to create objects, provide initial values for states,
and implementations of behavior for use by a software mod-
ule to perform a statistical test. The virtual software class
522-2 may include an extensible template to create objects,
provide initial values for states, and implementations of
behavior for use by the separate software module having a
base software class 522-1 for the statistical test, the base
software class 522-1 to comprise a child of the virtual soft-
ware class 522-2. The virtual software class 522-2 may be
used to extend the base software class 522-1 when used with
a particular computing system, such as a distributed comput-
ing system. This allows standard statistical test code using the
base software class 522-1 to take advantage of parallel pro-
cessing algorithms implemented by the distributed comput-
ing environment, without having to make modifications to the
base software class 522-1. The software classes 522-vmay be
described in more detail with reference to FIGS. 8-11, infra.

FIG. 6 illustrates a diagram for a computing system 600.
The computing system 600 may be representative of a com-
puting system suitable for implementing the automated sta-
tistical test system 100.

As shown in FIG. 6, the computing system 600 includes a
computing environment 606 designed for processing large
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amounts of data for many different types of applications, such
as for scientific, technical or business applications that
require a greater number of computer processing cycles. The
computing environment 606 may include different types of
computing systems, such as a centralized computing system
608 and a distributed computing system 610. Client devices
602-1, 602-2, through 602-¢ can interact with the computing
environment 606 through a number of ways, such as over a
network 604, where e may be any positive integer. The net-
work 604 may comprise a public network (e.g., the Internet),
a private network (e.g., an intranet), or some combination
thereof.

One or more data stores 660 are used to store the data to be
processed by the computing environment 606 as well as any
intermediate or final data generated by the computing system
in non-volatile memory. However in certain embodiments,
the configuration of the computing environment 606 allows
its operations to be performed such that intermediate and final
data results can be stored solely in volatile memory (e.g.,
RAM), without a requirement that intermediate or final data
results be stored to non-volatile types of memory (e.g., disk).

This can be useful in certain situations, such as when the
computing environment 606 receives ad hoc queries from a
user and when responses, which are generated by processing
large amounts of data, need to be generated on-the-fly (e.g., in
real time). In this non-limiting situation, the computing envi-
ronment 606 is configured to retain the processed information
within memory so that responses can be generated for the user
at different levels of detail as well as allow a user to interac-
tively query against this information.

A client device 602-¢ may implement portions of the auto-
mated statistical test system 100, such as the simulation sub-
system 120, for example. When the simulation subsystem 120
executes, and the statistic simulator component 122-2 ini-
tiates simulation operations, the simulation control engine
124 of the statistic simulator component 122-2 may generate
a simulation request 530 and send the simulation request 530
to the computing environment 606 via the network 604. The
computing environment 606 may receive the simulation
request 530, and when the simulation request 530 indicates a
need for centralized computations, the computing environ-
ment 606 may forward the simulation request to the central-
ized computing system 608 for simulation operations. When
the simulation request 530 indicates a need for distributed
computations (e.g., parallel processing operations), the com-
puting environment 606 may forward the simulation request
530 to the distributed computing system 610 for simulation
operations. The computing systems 608, 610 may be inte-
grated with, or capable of interaction with, a database man-
agement system (DBMS) 612 used to control and manage
interaction with the data stores 660. The data stores 660 may
include, for example, the simulation database 340, as well as
other data needed for a given simulation.

FIG. 7 illustrates a diagram of a distributed computing
system 610. The distributed computing system 610 may
include one or more client devices, such as client device 602,
control node 702 and one or more work nodes 704-1 through
704-f, where f may be any positive integer. The control node
702 and worker nodes 704-1 through 704-f may have any of
the computer system configurations as described with refer-
ence to FI1G. 5.

The statistic simulator component 122-2 may simulate sta-
tistics with the distributed computing system 610 via the
simulation control engine 124. In one embodiment, the dis-
tributed computing system 610 may comprise multiple data
processing nodes each having multi-core data processors,
with at least one of the data processing nodes designated as a

5

10

15

20

25

30

35

40

45

50

55

60

65

16

control data processing node (“control node”) and multiple
data processing nodes designated as worker data processing
nodes (“worker node”).

The client device 602 may couple to a central process, or
control node 702, which, in turn, is coupled to one or more
worker nodes 704-1 through 704-f. In general, each of the
nodes of the distributed computing system 610, including the
control node 702, and worker nodes 704-1 through 704-f, may
include a distributed computing engine (DCE) 706 that
executes on a data processor associated with that node and
interfaces with buffer memory 708 also associated with that
node. The DCE 706 may comprise an instance of the distrib-
uted computing engine 124 of the statistical simulator com-
ponent 122-2 of the simulation subsystem 120. Each of the
nodes may also optionally include an interface to the DBMS
612 and the data stores 660, or local implementations of both
(not shown).

Invarious embodiments, the control node 702 may manage
operations in one or more of the worker nodes 704-1 through
704-f. More particularly, the control node 702 may be
arranged to receive and process a simulation request 530 from
the client device 602 when distributed computations are to be
performed with data stored in one or more of the worker
nodes 704-1 through 704-f

Invarious embodiments, one or more of the components of
distributed computing system 610 may be collocated, includ-
ing the client device 602, control node 702, and one or more
worker nodes 704-1 through 704-f. However, more generally,
none of the components of distributed computing system 610
need be collocated. Furthermore, in some embodiments,
more than one node of the distributed computing system 610
may be arranged to assume the role of the control node. Thus,
in some scenarios, the component designated as the control
node 702 may assume the role of a worker node, while one of
the worker nodes 704-1 to 704-f may assume the role of the
control node 702.

In various embodiments, in operation a simulation request
530 may be received by the control node 702 to simulate data
and/or statistics for a statistical test, as described previously
with respect to FI1G. 1. For example, the client device 602 may
generate a simulation request 530 to perform a statistical test
simulation, which is processed by the control node 702 to
construct work requests to be performed by one or more
worker nodes 704-1 through 704-f.

In particular embodiments, a simulation request 530 gen-
erated by client device 602 may be received with a name for
the distributed computing system 610 to process the simula-
tion request 530. Accordingly, when the distributed comput-
ing system 610 is designated, the simulation request 530 is
transmitted to control node 702.

Consistent with the present embodiments, when the con-
trol node 702 receives a simulation request 530 sent from the
client device 602, the control node 702 may unpack the simu-
lation request 530, parse the simulation request 530, and
establish a flow of execution steps to perform an operation
such as an simulating statistics using one or more worker
nodes 704-1 through 704-f of the distributed computing sys-
tem 610.

As illustrated in FIG. 7, the distributed computing system
610 may further include a communication protocol such as
the message passing interface (MPI) 710. When the control
node 702 establishes a flow of execution for a simulation
request 530, the control node 702 may distribute the execu-
tion steps to worker nodes 704-1 to 704-f via the message
passing interface 710. Subsequently, results may be returned
from one or more worker nodes 704-1 to 704-f'to the control
node 702 via the message passing interface 710.
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In various embodiments, each of multiple worker nodes
704-1 to 704-f may contain a respective partition of data to be
processed according to the compute request. The control node
702 may establish an execution flow in which messages are
sent to multiple different worker nodes 704-1 to 704-f. Each
worker node 704-1 to 704-f may subsequently load and
execute a specified simulation function for the partition of
data contained by that worker node.

When each of the worker nodes 704-1 to 704-f, that
receives a message to execute a simulation function from
control node 702, completes execution of its specified simu-
lation function on its partition of data, the one or more worker
nodes 704-1 through 704-f may return results to the control
node 702 through the message passing interface 710. The
results may subsequently be returned from the control node
702 to the client device 602 that generated the simulation
request 530.

Although FIG. 7 illustrates a distributed database network
that comprises a control node 702 and multiple worker nodes
704-f, more general embodiments include any network in
which an interface is provided so that a client device may
initiate the execution of a compute request within a group of
foreign machines, utilize resources of the foreign machines,
including memory, input/output functionality, loading of
images, launching of threads, and/or utilize a distributed data-
base structure to send and receive message instructions and
results.

FIG. 8 illustrates one example of a logic flow 800. The
logic flow 800 may be representative of some or all of the
operations executed by one or more embodiments described
herein, such as the statistical simulator component 122-2 of
the simulation subsystem 120 of the automated statistical test
system 100.

In the illustrated embodiment shown in FIG. 8, the logic
flow 800 may generate simulated data for a statistical test, the
statistics of the statistical test based on parameter vectors to
follow a probability distribution of a known or unknown form
at block 802. For example, the simulated data component
122-1 may generate simulated data 330 for a statistical test
114, the statistical test 114 based on parameter vectors
(points) to follow a probability distribution.

The logic flow 800 may simulate statistics for the param-
eter vectors from the simulated data with a distributed com-
puting system comprising multiple nodes each having one or
more processors capable of executing multiple threads, the
simulation to occur by distribution of portions of the simu-
lated data across the multiple nodes of the distributed com-
puting system at block 804. For example, the simulated data
generator 320 ofthe statistic simulator component 122-2 may
simulate statistics for parameter vectors from the simulated
data 330, where each parameter vector to comprise a single
point in a grid of points. The simulation may be performed
using a distributed computing system 610 comprising a con-
trol node 702 and one or more worker nodes 704-1 through
704-f, each having one or more processors capable of execut-
ing multiple threads. The simulation may occur by distribu-
tion of portions of the simulated data 330 across the control
node 702 and the one or more worker nodes 704-1 through
704-f of the distributed computing system 610.

The logic flow 800 may control task execution on the
distributed portions of the simulated data on each node of the
distributed computing system with a virtual software class
arranged to coordinate task and sub-task operations across the
nodes of the distributed computing system at block 806. For
example, the simulation control engine 124 of the statistical
simulator component 122-2 may control task execution to
simulate statistics 430 from the distributed portions of the
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simulated data 330 on each control node 702 and one or more
worker nodes 704-1 through 704-fof the distributed comput-
ing system 610 with a virtual software class 522-2 arranged to
assist in coordinating task and sub-task operations across the
control node 702 and the one or more worker nodes 704-1
through 704-f of the distributed computing system 610.

FIG. 9 illustrates one example of a logic flow 900. The
logic flow 900 may be representative of some or all of the
operations executed by one or more embodiments described
herein, such as the simulation control engine 124 of the sta-
tistical simulator component 122-2 of the simulation sub-
system 120 ofthe automated statistical test system 100, on the
distributed computing system 610. More particularly, logic
flow 900 illustrates the simulation control engine 124 creating
an instance of a virtual software class 522-2 on one or more
nodes of the distributed computing system 610.

In some cases, simulation tasks may be implemented by
control node 702 and one or more worker nodes 704-1
through 704-f arranged in soloist architecture or a general/
captain architecture. In a soloist architecture, simulations
may be performed by a centralized computing system 608. In
a general/captain architecture, simulations may be performed
by a distributed computing system 610, where a control node
702 is designated as a general node, and one or more worker
nodes 704-1 through 704-f may be designated as captain
nodes.

As shown in FIG. 9, the logic flow 900 may perform ini-
tializing and parsing operations at block 902. A call to an
instance of software class tksimDoAnalysis may be made to
initiate task analysis at block 904. A subroutine named
DoAnalysis(.) to perform the task analysis may be executed at
block 906. Control is passed at point A.

When in a general/captain mode, control is passed at point
B to the general node, a subroutine for task initialization may
be executed at block 910. At general start, a subroutine named
Managelnformation(.): Message Loop may be executed at
block 912. A test whether the task is analysis is performed at
diamond 914. If the test is not passed, various clean up pro-
cedures are called and general processing terminates. If the
test is passed, subroutines TaskManager(.), Zathread(.),
Launcher(.) and DoAnalysis(.) are executed in a recursive
manner at block 916. Control is passed at point C. Control is
returned to the general node at point D.

The Managelnformation(.): Message Loop executed at
block 912 may broadcast instructions to one or more captain
nodes. The captain nodes perform operations similar to the
general node for portions of the simulation. For instance, at
captain start, an initialization may be executed at block 918
and a subroutine named Managelnformation(.): Message
Loop may be executed at block 920. A test whether the task is
analysis is performed at diamond 922. Ifthe test is not passed,
various clean up procedures are called and captain processing
terminates. If the test is passed, subroutines TaskManager(.),
Zathread(.), Launcher(.) and DoAnalysis(.) are executed in a
recursive manner at block 924. Control is passed at point E.
Control is returned to the captain node at point F.

FIG. 10 illustrates one example of a logic flow 1000. The
logic flow 1000 may be representative of some or all of the
operations executed by one or more embodiments described
herein, such as the simulation control engine 124 of the sta-
tistical simulator component 122-2 of the simulation sub-
system 120 of the automated statistical test system 100. More
particularly, the logic flow 1000 interoperates with the logic
flow 900 at the various control locations A-F.

As shown in the logic flow 1000, when control is passed at
control location A from the logic flow 900, a determination is
made as to whether task analysis is to be performed in a
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soloist architecture or a general/captain architecture at dia-
mond 1032. If a soloist architecture, then subroutines Create-
ParentTKVRTInstance(.) and tkvrtGridlnitialize(.) are
executed at block 1036. A loop starts to execute subroutines
ExecuteTheThreads(str, TASK_ANALYSIS) and tkvrtGrid-
Summarize(.) at block 1038. Control is passed at point A. If
not a soloist architecture, then a determination is made as to
whether task analysis is to be performed in a general/captain
architecture at diamond 1034. If a general/captain architec-
ture, then control is passed at control location B to the logic
flow 900.

When control is passed at control location C from the logic
flow 900, the general node may execute a subroutine Grid-
Task(str, TASK_ANALYSIS) at block 1040, a subroutine
MPI_Bcast(TASK_ANALYSIS)at block 1042, and a Create-
Parent TKVRTInstance(.) and tkvrtGridlnitialize(.) at block
1044. A loop starts to execute subroutines ExecuteTheTh-
reads(str, TASK_ANALYSIS) and tkvrtGridSummarize(.) at
block 1046. Once the loop completes, the general node
executes a subroutine MPI_Bcast(TASK_LOCALSTOP,) at
block 1048. Parameters TASK_ANALYSIS and/or TASK_
LOCALSTORP are passed to the block 1050, and control is
passed at control location D to the logic flow 900.

Certain subroutines executed by the general node are
designed to interoperate with subroutines executed by the
captain node to coordinate completion of tasks and sub-tasks.
For instance, when the general node executes subroutines
CreateParent TKVRTInstance(.) and tkvrtGridlnitialize(.) at
block 1044, and the loop at block 1046, messages and param-
eters may be exchanged in similar subroutines executed by
the captain node at corresponding blocks 1056, 1058, respec-
tively, to coordinate task and sub-task completion. Such com-
munication between general node and captain nodes may be
necessary for some complex algorithms; however, for algo-
rithms in which the tasks and sub-tasks are independent, no
such communication is needed and execution cost is saved.

When control is passed at control location E from the logic
flow 900, the captain node may start a loop to execute sub-
routines GridTask(str, TASK_UNKNOWN) and MPI_Bcast
(task,) at block 1050. A determination is made as to whether
analysis is complete at diamond 1052 using the TAS-
K_ANALYSIS parameter. If the TASK_ANALYSIS param-
eter is evaluated as TRUE, the subroutines at blocks 1056,
1058 are executed, and control is passed back to block 1050.
Ifthe TASK_ANALYSIS parameter is evaluated as FALSE, a
determination is made as to whether a local stop has occurred
at diamond 1054 using the TASK_[LOCALSTOP parameter.
Ifthe TASK_TLOCALSTOP parameter is evaluated as TRUE,
control is passed at control location F. If the TASK_LLOCAL-
STOP parameter is evaluated as FALSE, control is passed
back to block 1050.

FIG. 11 illustrates one example of a logic flow 1100, which
shows how to finish the tasks and sub-tasks in parallel in the
multithread environment. The logic flow 1100 may be repre-
sentative of some or all of the operations executed by one or
more embodiments described herein, such as the simulation
control engine 124 of the statistical simulator component
122-2 of the simulation subsystem 120 of the automated
statistical test system 100. More particularly, the logic flow
1100 illustrates certain operations for subroutines executed at
blocks 1038, 1046 and 1058 of the logic flow 1000.

As shown in the logic flow 1100, when the subroutine
ExecuteTheThreads(.) is executed at blocks 1038, 1046 and
1058 of the logic flow 1000, thread execution 1170 executes
subroutines InitializeParentThread(.) and tkvrtlnitialize
(parentlnst) at block 1172. The thread execution 1170 then
starts a Loop for all child to execute subroutines threadsIni-
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tializeChildThreads(.) and tkvrtnitialize(childInst) at block
1174. The thread execution 1170 then starts an event loop to
execute subroutines InitializeChildThreads(.) and tkvrtlni-
tialize(childInst) at block 1176. The thread execution 1170
then executes subroutines AccumulateChildThreads(.) and
tkvrtSummarize(parentlnst) at block 1178.

In one embodiment, the simulation control engine 124 may
control thread execution 1170 for each control node 702 and
worker nodes 704-1 through 704-fof the distributed comput-
ing system 610 with a various instances of a virtual software
class 522-2. The virtual software class 522-2 may be arranged
to control task operations across the control node 702 and
worker nodes 704-1 through 704-fof the distributed comput-
ing system 610 while reducing dependency between tasks
and sub-tasks. The logic flow 1100 illustrates an example for
a virtual software class 522-2 called TKVRT extension 1180.

Invarious embodiments, the simulation control engine 124
may pass or receive one or more virtual software class param-
eters for each instance of a virtual software class, the one or
more parameters comprising at least one of input/output
parameters, input/output tables, or a pointer to list all
instances of virtual software class parameters. For instance,
with respect to TKVRT extension 1180, the simulation con-
trol engine 124 may pass or receive one or more virtual
software class parameters for each instance of TKVRT,
including tkvrtParmsPtr, input/output parameters, input/out-
put tables, and a pointer to list all instances of tkvrtParmPtrs
atblock 1182. The TKVRT extension 1180 may also include
several subroutines as used in logic flow 900, 1000.

In one embodiment, the simulation control engine 124 may
initialize a parent thread with parent parameters with a first
instance of'the virtual software class TKVRT extension 1180,
which includes tkvrtinitialize(parentinst) as shown in block
1184.

In one embodiment, the simulation control engine 124 may
initialize a child thread with child parameters with a first
instance of'the virtual software class TKVRT extension 1180,
which includes tkvrtinitialize(childinst) as also shown in
block 1184.

In one embodiment, the simulation control engine 124 may
analyze work results of a child thread with a second instance
of the virtual software class TKVRT extension 1180, which
includes tkvrtAnalyze(childInst) as shown in block 1186.

In one embodiment, the simulation control engine 124 may
summarize work results of a child thread to a parent thread
with a third instance of the virtual software class TKVRT
extension 1180, which includes tkvrtSummarize(parentlnst)
as shown in block 1188.

In one embodiment, the simulation control engine 124 may
initialize a grid with parent parameters with a fourth instance
of the virtual software class TKVRT extension 1180, which
includes tkvrtGridlnitialize(parentlnst) as shown in block
1190.

In one embodiment, the simulation control engine 124 may
summarize a grid with parent parameters with a fifth instance
of the virtual software class TKVRT extension 1180, which
includes tkvrtGridSummarize(parentlnst) as shown in block
1192.

It may be appreciated that these are merely a few example
subroutines for the TKVRT extension 1180, and others exist
as well. Embodiments are not limited in this context.

FIG. 12 illustrates one example of a logic flow 1200. The
logic flow 1200 may be representative of some or all of the
operations executed by one or more embodiments described
herein, such as the simulation control engine 124 of the sta-
tistical simulator component 122-2 of the simulation sub-
system 120 of the automated statistical test system 100. More
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particularly, the logic flow 1200 illustrates distribution algo-
rithms for use with the distributed computing system 610.

As shown in FIG. 12, the logic flow 1200 may generate
simulated data for a statistical test, the statistics of the statis-
tical test based on parameter vectors to follow a probability
distribution at block 1202. For example, the simulated data
component 122-1 may generate simulated data 330 for a
statistical test 114, the statistics of the statistical test 114
based on parameter vectors to follow a probability distribu-
tion of a known or unknown form.

The logic flow 1200 may simulate statistics for the param-
eter vectors from the simulated data, each parameter vector to
comprise a single point in a grid of points, with a distributed
computing system comprising multiple nodes each having
one or more processors capable of executing multiple threads,
the simulation to occur through distribution of portions of the
simulated data or simulated statistics across the multiple
nodes ofthe distributed computing system in accordance with
a column-wise or column-wise-by-group distribution algo-
rithm at block 1204. For example, the simulated statistic
generator 420 ofthe statistic simulator component 122-2 may
simulate statistics for the parameter vectors from the simu-
lated data 330. Each parameter vector for the statistical test
114 may comprise a single point in a grid of points, with the
grid of points to be used for interpolation. The simulation may
be performed with a distributed computing system 610 com-
prising control node 702 and worker nodes 704-1 through
704-f. Each of control node 702 and worker nodes 704-1
through 704-f'may have one or more processors capable of
executing multiple threads. The simulation control engine
124 of the statistic simulator component 122-2 may control
simulation of the statistical test 114 by distributing portions of
the simulated data 330 and/or simulated statistics 430 across
the control node 702 and worker nodes 704-1 through 704-fof
the distributed computing system 610 in accordance with a
column-wise or column-wise-by-group distribution algo-
rithm. A column-wise or column-wise-by-group distribution
algorithm may be described in more detail with reference to
FIGS. 13-17, infra.

The logic flow 1200 may create a computational represen-
tation arranged to generate an approximate probability distri-
bution for each point in the grid of points from the simulated
statistics, the approximate probability distribution to com-
prise an empirical cumulative distribution function (CDF) at
block 1206. For example, the code generator component
122-3 may create a computational representation 130, such as
a DLL file. The computational representation 130 may be
arranged to generate an approximate probability distribution
132 for each point in the grid of points from the simulated
statistics 430. The approximate probability distribution 132
may comprise an empirical CDF, for example.

FIG. 13 illustrates an example of a simulated data structure
1300. The simulated data structure 1300 may be a software
data structure arranged to store simulated data 330 and/or
simulated statistics 430 in the simulation database 340.

The statistic simulator component 122-2 may generate the
simulated data structure 1300. In one embodiment, the statis-
tic simulator component 122-2 may generate the simulated
data structure 1300 as a table. The simulated data structure
1300 may include an ordered arrangement of rows 1302-g
and columns 1304-/ to form multiple cells 1306-i, where g, h
and i may be any positive integer. A cell 1306-i may contain
a simulation of a simulated statistic 430 (or simulated data
330) for a point in the grid of points, where each row 1302-g
represents a simulation of the simulated statistic 430 (or
simulated data 330), and each column 1304-/ represents a
point in the grid of points.
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When populated, the simulated data structure 1300 may
have a defined data storage size for a given statistical test 114.
For instance, with the maxF test, the simulated data structure
1300 may comprise 1,000,000 rows and 103,780 columns,
which gives the simulated data structure 1300 a data storage
size of approximately 800 Gigabytes (GB).

FIG. 14 illustrates an example of an operational environ-
ment 1400. The operational environment 1400 shows distrib-
uting portions of the simulated data structure 1300 as column-
based work units for the distributed computing system 610.

The simulation control engine 124 of'the statistic simulator
component 122-2 may control simulation of the statistical test
114 by distributing portions of the simulated data structure
1300 across the control node 702 and worker nodes 704-1
through 704-f of the distributed computing system 610 in
accordance with a column-wise distribution algorithm. For
instance, the simulation control engine 124 may distribute the
simulated data structure 1300 by column across multiple
worker nodes 704-1 through 704-fof the distributed comput-
ing system 610.

The DCE 706 of the control node 702 may distribute one or
more columns 1304-/ of the simulated data structure 1300 to
one or more worker nodes 704-1 through 704-f via the mes-
sage passing interface 710. As shownin FIG. 14, the DCE 706
may distribute columns 1304-1, 1304-2 . . . 1304-/% of the
simulated data structure 1300 as work units to the worker
nodes 704-1, 704-2 . . . 704-f, respectively. A worker node
may process its assigned work unit, such as sorting each
column 1304-% and/or calculating quantiles for the statistical
test 114. The worker nodes 704-1 through 704-f may pass
their processed work units, or pointers to the processed work
units, to the DCE 706 via the message passing interface 710.
The DCE 706 may reassemble the processed work units into
an output file to form a new version of the simulated data
structure 1300.

In one embodiment, the new version of the simulated data
structure 1300 may include an ordered arrangement of rows
and columns, each row to represent a point in the grid of
points and each column to represent a quantile for each point
in the grid of points. In the case where the worker nodes 704-1
through 704-f are tasked to calculate quantiles for the statis-
tical test 114, the worker nodes 704 may pass back a defined
number of quantiles as established for the statistical test 114.
For instance, with the maxF test, the original simulated data
structure 1300 may comprise 1,000,000 rows and 103,780
columns, which gives the original simulated data structure
1300 a data storage size of approximately 800 Gigabytes
(GB). Assume the worker nodes 704-1 through 704-f are to
calculate 10,001 quantiles for the maxF test. In this case, the
new simulated data structure 1300 may comprise 10,001 col-
umns and 103,780 rows, which gives the new simulated data
structure 1300 a reduced data storage size of approximately 8
GB.

In one embodiment, the statistic simulator component
122-2 may generate quantiles using the distributed comput-
ing system 610 in accordance with an exemplary procedure,
as follows:

PROC HPSIMULATE
data=scbpSimulation /* output of simulation with group head */
datadist=(COLUMNWISEBY);
MODULE name=SCBP
ext=tkscbp /* TK Extension to plug-in */
var=(c:) /* all columns */
task=1 /* Task : Post-processing */;
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-continued

OUTPUT out=scbpQuantiles;
PERFORMANCE nnodes=200 nthreads=6;
RUN.

Embodiments are not limited this example.

FIG. 15 illustrates an example of a simulated data structure
1500. The simulated data structure 1500 may be a software
data structure arranged to store simulated data 330 and/or
simulated statistics 430 in the simulation database 340.

The statistic simulator component 122-2 may generate the
simulated data structure 1500. In one embodiment, the statis-
tic simulator component 122-2 may generate the simulated
data structure 1500 as a table. The simulated data structure
1500 may include an ordered arrangement of rows 1502-j and
columns 1504-%to form multiple cells 1506-m, where j, k and
m may be any positive integer. A cell 1506-m may contain a
simulation of a simulated statistic 430 (or simulated data 330)
for a point in the grid of points, where each row 1502-j
represents a simulation of the simulated statistic 430 (or
simulated data 330), and each column 1504-% represents a
point in the grid of points. Additionally, the simulated data
structure 1500 may be organized into column groups 1508-7,
where n may be any positive integer. For instance, a first
column group 1508-1 may include six columns for parameter
vector 4, and a second column group 1508-2 may include five
columns for parameter vector 5, and so forth.

As with simulated data structure 1300, the simulated data
structure 1500 may have a defined data storage size for a
given statistical test 114. For instance, with the maxF test, the
simulated data structure 1500 may comprise 1,000,000 rows
and 103,780 columns, which gives the simulated data struc-
ture 1500 a data storage size of approximately 800 Gigabytes
(GB).

FIG. 16 illustrates an example of an operational environ-
ment 1600. The operational environment 1600 shows distrib-
uting portions of the simulated data structure 1500 as column-
group-based work units for the distributed computing system
610.

The simulation control engine 124 of the statistic simulator
component 122-2 may control simulation of the statistical test
114 by distributing portions of the simulated data structure
1500 across the control node 702 and worker nodes 704-1
through 704-f of the distributed computing system 610 in
accordance with a column-wise-by-group distribution algo-
rithm. For instance, the simulation control engine 124 may
distribute the simulated data structure 1500 by groups of
columns (or column groups) across multiple worker nodes
704-1 through 704-fof the distributed computing system 610.
Distributing the simulated data structure 1500 may make it
easier to calculate the simulated statistic 430 for each point in
the grid of points relative to the column-wise distribution
algorithm.

The simulation control engine 124 may perform column
group distribution according to column groups 1508-»
defined in a control row of the simulated data structure 1500.
The control row may include various identifiers or parameters
to control distribution. In one embodiment, for example, the
control row may include a group identifier to identify corre-
sponding columns in a group, a restriction identifier to iden-
tify corresponding columns that do not need to be distributed,
and a universal identifier to identify corresponding columns
that need to be distributed across all worker nodes. It may be
appreciated that other identifiers and parameters may be used
as desired for a given implementation. Embodiments are not
limited in this context.
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The DCE 706 of the control node 702 may distribute one or
more column groups 1508-# of the simulated data structure
1500 to one or more worker nodes 704-1 through 704-fvia the
message passing interface 710. As shown in FIG. 16, the DCE
706 may distribute columns 1508-1, 1508-2 . . . 1508-» of the
simulated data structure 1500 as work units to the worker
nodes 704-1, 704-2 . . . 704-f, respectively. A worker node
may process its assigned work unit, such as calculating the
statistics for the statistical test 114, based on the column
groups, and then calculating quantiles for the statistical test
114. The worker nodes 704-1 through 704-f may pass their
processed work units, or pointers to the processed work units,
to the DCE 706 via the message passing interface 710. The
DCE 706 may reassemble the processed work units into an
output file to form a new version of the simulated data struc-
ture 1500.

In one embodiment, the new version of the simulated data
structure 1500 may include an ordered arrangement of rows
and columns, each row to represent a point in the grid of
points and each column to represent a quantile for each point
in the grid of points. In the case where the worker nodes 704-1
through 704-f calculate quantiles for the statistical test 114, as
with the simulated data structure 1300, the worker nodes
704-1 through 704-f may pass back a defined number of
quantiles as established for the statistical test 114. For
instance, with the WDmaxF test, the original simulated data
structure 1500 may comprise 1,000,000 rows and 103,780
columns of maxF test statistics, which gives the original
simulated data structure 1500 a data storage size of approxi-
mately 800 Gigabytes (GB). Assume the worker nodes 704-1
through 704-f are to calculate 10,001 quantiles for the
WDmaxF test. In this case, the new simulated data structure
1500 may comprise 10,001 columns and 103,780 rows,
which gives the new simulated data structure 1500 a reduced
data storage size of approximately 8 GB.

FIG. 17 illustrates an example of a simulated data structure
1700. The simulated data structure 1700 may illustrate an
example of the new versions of the simulated data structures
1300,1500. As described with reference to FIGS. 13-16, new
versions of the simulated data structures 1300, 1500 may each
include an ordered arrangement of rows 1702-p and columns
1704-¢, each row 1702 to represent a point in the grid of
points and each column 1704 to represent a quantile of the
grid of points. In various embodiments, cell 1706-» may
contain a simulation of a simulated statistic for a point in the
grid of structure 1700. Simulated data structure 1700 is trans-
posed relative to the simulated data structures 1300, 1500, in
that the simulated data structures 1300, 1500 have columns
representing points in a grid of points, while the simulated
data structure 1700 has columns representing quantiles.

FIG. 18 illustrates one example of a logic flow 1800. The
logic flow 1800 may be representative of some or all of the
operations executed by one or more embodiments described
herein, such as the statistic simulator component 122-2 of'the
simulation subsystem 120 of the automated statistical test
system 100. More particularly, the logic flow 1800 illustrates
curve fitting algorithms for use with a grid of points.

As shown in FIG. 18, the logic flow 1800 may generate
simulated data for a statistical test, statistics of the statistical
test based on parameter vectors to follow a probability distri-
bution at block 1802. For example, the simulated data com-
ponent 122-1 may generate simulated data 330 for a statistical
test 114, the statistical test 114 based on parameter vectors to
follow a probability distribution of known or unknown form.
Alternatively, the simulated data component 122-1 may
receive simulated data 330 for a statistical test 114 from an
external source.
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The logic flow 1800 may simulate statistics for the param-
eter vectors from the simulated data, each parameter vector to
comprise a single point in a grid of points at block 1804. For
instance, the statistic simulator component 122-2 may gener-
ate simulated statistics 430 for the parameter vectors from the
simulated data 330, each parameter vector to comprise a
single point in a grid of points.

The logic flow 1800 may calculate quantiles for the param-
eter vectors from the simulated data at block 1806. For
instance, the statistic simulator component 122-2 may calcu-
late quantiles saved in the simulated data structure 1700 for
the parameter vectors from the simulated data 330.

The logic flow 1800 may fit an estimated CDF curve to
quantiles for each point in the grid of points using a mono-
tonic cubic spline interpolation technique in combination
with a transform to satisfy a defined level of precision at block
1808. For instance, the statistic simulator component 122-2
may construct an estimated CDF curve for each point in the
grid of points using a monotonic cubic spline interpolation
technique in combination with a transform to interpolate
quantiles in the simulated data structure 1700 in order to
satisfy a precision level of interest.

Once the simulation control engine 124 generates the
simulated data structure 1700 with quantiles for the statistical
test 114, the statistic simulator component 122-2 may use the
quantiles to fit an estimated CDF curve for each point in the
grid of points. The statistic simulator component 122-2 may
fit an estimated CDF for each point according to a given level
of precision. In general, reducing a level of precision results
in a corresponding reduction in a number of curve parameters
needed to fit the estimated CDF curve.

As previously described with reference to FIG. 2, the sta-
tistic simulator component 122-2 may simulate statistics for
all given parameter vectors (p) for a statistical test (T) from
the simulated data 330. In accordance with Equation (1), the
empirical CDF T(p, x) may have a precision of approximately
l/fﬁ , where N is the sample size, or the number of simulated
statistics, for the given parameter vector p. For example,
when N=1,000,000, the precision is about 0.001. However,
the statistic simulator component 122-2 may generate an
estimated CDF curve with much fewer curve parameters than
N.

The statistic simulator component 122-2 may select a num-
ber of curve parameters to fit an estimated CDF curve for each
point in the grid of points to provide a given level of precision.
For instance, assume that a precision level is set as 0.0005,
and that a monotonic cubic spline interpolation technique is
used to fit the curve. On average, approximately 20 curve
parameters can achieve a curve C(c(p),) as set forth in Equa-
tion (2), as follows:

max|C(c(p), x)-T(p, x)| < 0.0005 Equation (2)

where c(p) denotes the point-dependent curve parameters.
In some cases, however, anumber of curve parameters may
be reduced through combination of a monotonic cubic spline
interpolation technique and a transform. In one embodiment,
for example, the statistic simulator component 122-2 may
combine a monotonic cubic spline interpolation technique
with a beta transformation. A beta transformation is a trans-
form performed in accordance with a normalized incomplete
beta function, the normalized incomplete beta function com-
prising a nonnegative function whose derivative is com-
pletely positive. In one embodiment, a beta function may
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comprise a CDF of a beta distribution. A beta distribution is a
family of continuous probability distributions defined on the
interval [0, 1] parameterized by two positive shape param-
eters, denoted by a and f3, that appear as exponents of the
random variable and control the shape of the distribution.

Assume the monotonic cubic spline interpolation tech-
nique fits a first estimated CDF curve with a first number of
knots to give a first level of precision (0.0005), each knot
comprising an X value and a y value for a two-dimensional
coordinate system. The monotonic cubic spline interpolation
technique spaces the x values at regular intervals along the
Xx-axis as it is monotonic. As such, more knots are needed to
accurately fit the curve. The monotonic cubic spline interpo-
lation technique may be combined with a beta transformation
to transform the x values to reduce the first number of knots to
a second number of knots that gives approximately the first
level of precision (0.0005), where the second number ofknots
is lower than the first number of knots. Applying the beta
transformation causes the x values to be placed at irregular
intervals, which reduces the number of knots.

Combining a monotonic cubic spline interpolation tech-
nique with a transform, such as the beta transformation,
results in fewer curve parameters needed for a same or similar
level of precision. For instance, in the previous example, the
use of the monotonic cubic spline interpolation technique
reduced a number of curve parameters from 1,000,000 simu-
lated statistics to approximately 20 curve parameters. By
combining the monotonic cubic spline interpolation tech-
nique with a beta transformation, the number of curve param-
eters may be further reduced from 20 curve parameters to 12
curve parameters, for a same or similar level of precision
(e.g., 0.0005).

Once a number of curve parameters are selected, the sta-
tistic simulator component 122-2 may fit an estimated CDF
curve for each point in the grid of points independently from
other points in the grid of points using the selected number of
curve parameters to provide a given level of precision. Fitting
an estimated CDF curve for each point independently signifi-
cantly reduces computational resources needed for curve-
fitting operations. For instance, in a simple case that the point
is one dimensional, rather than fitting estimated CDF curves
for all points in the grid of points simultaneously to build an
actual three-dimensional surface, the statistic simulator com-
ponent 122-2 fits an estimated curve for each point in
sequence or parallel, and then combines the estimated curves
to form an approximate three-dimensional surface.

Once curve-fitting operations are finished, the statistic
simulator component 122-2 may generate a simulated data
structure with information for a set of fitted CDF curves for
the grid of points. Continuing with the maxF test example, the
simulated data structure may have a data storage size calcu-
lated as 8 GB/10,001*12=10 megabytes (MB). As indicated
with the maxF test example, a data storage size for each
version of a simulated data structure reduces from 800 GB to
8 GB to 10 MB. This results in a significantly smaller data
storage size needed for the computational representation 130.

In one embodiment, the statistic simulator component
122-2 may perform curve-fitting operations in accordance
with the following exemplary procedure:

PROC HPSIMULATE
data=scbpQuantiles /* output of quantiles */
datadist=(ROUNDROBIN);
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-continued

MODULE name=fitcdf
ext=tkdens /* TK Extension to plug-in */
var=(key1 - key3 q0 - q10000) /* keys and quantiles */
task=0 /* Task : Fit CDF curves */

taskParmN=( /*nKeys=*/3 /*maxParm=*/32 /*maxIter=*/10000
[*precision=*/0.0005 /*maxModels="*/1 /*weightTails="*/0
*weightA=*/-4.605 /*weightB=*/5.685 /*transType="*/1
[*transGridL=*/-2.0 /*transGridU=*/2.0 /*transGridS=*/0.1 );

OUTPUT out=scbpFitCDFCurves;

PERFORMANCE nnodes=200 nthreads=6;

RUN.

Embodiments are not limited to this example.

FIG. 19 illustrates an operational environment 1900. The
operational environment 1900 shows operations for the code
generator component 122-3 to generate interpolation code to
interpolate statistics for a statistical test 114.

The simulated data component 122-1 may generate simu-
lated data 330 for a statistical test 114, the statistics of the
statistical test 114 based on parameter vectors to follow a
probability distribution of a known or unknown form. The
statistic simulator component 122-2 may generate simulated
statistics 430 for the parameter vectors from the simulated
data 330, each parameter vector to comprise a single point in
a grid of points. The code generator component 122-3 may
remove selective points from the grid of points to form a
subset of points, and generate interpolation code to interpo-
late a statistic of the statistical test 114 on any point.

As shown in FIG. 19, the code generator component 122-3
may receive a simulated data structure 1910. The simulated
data structure 1910 may include information for a set of fitted
CDF curves for the grid of points, as described with reference
to FIG. 18. The code generator component 122-3 may include
an interpolation code generator 1920 to execute an interpola-
tion function 1922.

In various embodiments, the interpolation code generator
1920 may generate interpolation source code 1930 from the
simulated data structure 1910 and a pair of interpolation
functions 1922, 1924.

The first interpolation function 1922 may be arranged to
call a second interpolation function comprising an instance of
the virtual software class. The interpolation function 1922
may be an instance of a base software class 522-1 designed to
call an instance of a virtual software class 522-2, where the
base software class 522-1 is a child of the virtual software
class 522-2. In one embodiment, for example, a base software
class 522-1 may be implemented as a TK-extension class for
interpolating statistics of the statistical test 114, and a virtual
software class 522-2 may be implemented as a virtual TK-
extension class (TKICDF). Embodiments, however, are not
limited to this example.

The second interpolation 1924 may be an instance of the
virtual software class 522-2. In one embodiment, the interpo-
lation function 1924 may implement a monotonic cubic
spline interpolation technique. In one embodiment, the inter-
polation function 1924 may implement a monotonic cubic
spline interpolation technique in combination with a trans-
form, such as the beta transformation, for example. The beta
transformation may comprise a transform with a normalized
incomplete beta function (the cumulative distribution func-
tion of beta distribution), the normalized incomplete beta
function to comprise a nonnegative function whose derivative
is completely positive.
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Alternatively, the interpolation code generator 1920 may
utilize a single interpolation function with some or all of the
characteristics of both interpolation functions 1922, 1924.
Embodiments are not limited in this context.

In some cases, the interpolation code generator 1920 may
have an integrated compiler 1932. The interpolation code
generator 1920 may generate the interpolation source code
1930, and use the compiler 1932 to compile the interpolation
source code 1930 in order to generate an interpolation execut-
able code 1940. Alternatively, the compiler 1932 may be
separate from the code generator component 122-3 (e.g., part
of an operating system).

In one embodiment, the interpolation code generator 1920
may generate the interpolation source code 1930 in accor-
dance with the following exemplary procedure:

PROC HPSIMULATE
data=scbpFitCDFCurves /* output of fitted CDF curves */
datadist=(ROUNDROBIN);
MODULE name=getCcode
ext=tkdens /* TK Extension to plug-in */
var=(key1 - key3 fit:) /* keys and fitting parameters */
task=1 /* Task : Generate source code */
taskParmN=( /*nKeys=*/3 /*bitflags=*/0 00 )
taskParmS=( /*OutputPath=*/ “u:\\temp”,
/*TK-ExtensionFileName=*/ “imax{”);
OUTPUT out=scbpIndexTableMaxF;
PERFORMANCE nnodes=0 nthreads=1;
RUN.

Embodiments are not limited to this example.

FIG. 20 illustrates one example of a logic flow 2000. The
logic flow 2000 may be representative of some or all of the
operations executed by one or more embodiments described
herein, such as the code generator component 122-3 of the
simulation subsystem 120 of the automated statistical test
system 100. More particularly, the logic flow 2000 illustrates
code generation operations for use with a grid of points.

As shown in FIG. 20, the logic flow 2000 may generate
simulated data for a statistical test, statistics of the statistical
test based on parameter vectors to follow a probability distri-
bution, at block 2002. For instance, the simulated data com-
ponent 122-1 may generate simulated data 330 for a statistical
test 114, the statistical test 114 based on parameter vectors to
follow a probability distribution of a known or unknown
form.

The logic flow 2000 may simulate statistics for the param-
eter vectors from the simulated data, each parameter vector to
comprise a single point in a grid of points, at block 2004. For
instance, the statistic simulator component 122-2 may gener-
ate simulated statistics 430 for the parameter vectors from the
simulated data 330, each parameter vector to comprise a
single point in a grid of points.

The logic flow 2000 may remove selective points from the
grid of points to form a subset of points at block 2006. For
instance, the code generator component 122-3 may remove
selective points from the grid of points to form a subset of
points. The code generator component 122-3 may receive a
simulated data structure 1910 with information for estimated
CDF curves of the subset of points.

The logic flow 2000 may generate interpolation code to
interpolate a statistic of the statistical test on any point at
block 2008. For instance, the code generator component
122-3 may generate interpolation source code 1930 or inter-
polation executable code 1940 to interpolate a statistic of the
statistical test 114 on any point in the grid of points to form an
estimated CDF curve. The interpolation code may include,
among other types of information, the simulated data struc-
ture 1910, index tables for the simulated data structure 1910,



US 9,208,131 B2

29

and a first interpolation function 1922 designed to call a
second interpolation function 1924.

The interpolation source code 1930 may be used to inter-
polate a CDF for any given point p for a statistical test 114.
Assume the simulation subsystem 120 is executed to simulate
and fit CDFs on M points. Those M points construct a grid (or
mesh), which is contained in the interpolation source code
1930 as generated by the code generator component 122-3 of
the simulation subsystem 120. The compiler 1932 may com-
pile the interpolation source code 1930 into interpolation
executable code 1940, such as a DLL, for example. The DLL
may be used to interpolate a CDF for any given point p of the
statistical test, regardless of whether p is a point within the
grid of points M or outside of the grid of points M.

FIG. 21A illustrates an operational environment 2100. The
operational environment 2100 shows operations for the code
generator component 122-3 to generate a computational rep-
resentation 130 for a statistical test 114.

As shown in FIG. 21A, the code generator component
122-3 may include a CDF code generator 2120. The CDF
code generator 2120 may receive a simulated data structure
1910 and interpolation source code 1930 from the interpola-
tion code generator 1920. The simulated data structure 1910
and the interpolation source code 1930 may be integrated or
separate from each other. The simulated data structure 1910
may include information for a set of fitted CDF curves for the
grid of points, as described with reference to FIG. 18. The
interpolation source code 1930 may interpolate a statistic of
the statistical test 114 on any point.

The CDF code generator 2120 may create a computational
representation 130 arranged to generate an approximate prob-
ability distribution 132 for each point in the grid of points
from the simulated data structure 1910. For instance, the CDF
code generator 2120 may generate CDF source code 2130
and/or CDF executable code 2140 via the compiler 2132. The
compiler 2132 may be integrated with, or separate from, the
CDF code generator 2120. The computational representation
130 may include the interpolation source code 1930. The
computational representation 130 may also include a set of H
files, data C files, function C files, and a build script.

FIG. 21B illustrates one example of a logic flow 2150. The
logic flow 2150 may be representative of some or all of the
operations executed by one or more embodiments described
herein, such as the CDF code generator 2120 of the code
generator component 122-3 of the simulation subsystem 120
of the automated statistical test system 100. More particu-
larly, the logic flow 2150 illustrates code generation opera-
tions to generate a computational representation 130.

As shown in FIG. 21B, the logic flow 2150 may receive a
simulated data structure 1910 with information for a set of
fitted CDF curves for the grid of points as input 2160. A
process 2170 may generate source code for a computational
representation 130, as implemented in generating source
code 2172 by incorporating template files, data, and instruc-
tions into the corresponding type of files. For instance, the
CDF code generator 2120 may generate CDF source code
2130 with the simulated data structure 1910 and interpolation
source code 1930. The logic flow 2150 may output various
types of source code files and logic as output 2180. For
instance, the CDF code generator 2120 may generate source
code files for CDF source code 2130.

The CDF source code 2130 may include, for example, one
or more H files 2182. An H file 2182 may contain data struc-
tures and interface functions for the usage of a set of data and
the interpolation based on the set of data. The CDF source
code 2130 may include, for example, one or more data C files
2184. A data C file 2184 may contain all fitted CDF curves
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saved in a data structure and functions of using such data
structure. The CDF source code 2130 may include, for
example, one or more function C files 2186. A function C file
contains a function for the interpolation based on a given set
of data, such as data in the simulated data structure 1910, for
example, the set of fitted CDF curves.

The CDF source code 2130 may also include logic imple-
mented in the form of one or more scripts 2188. For instance,
the CDF source code 2130 may include a build script or make
file that specifies how to build a software library.

FIG. 22 illustrates an operational environment 2200. The
operational environment 2200 shows operations for the
evaluation component 122-4 to reduce a data storage size for
a computational representation 130.

As shown in FIG. 22, the evaluation component 122-4 may
comprise a data reduction generator 2220. The data reduction
generator 2220 may receive as input a computational repre-
sentation 130 arranged to generate an approximate probabil-
ity distribution 132 for each point in a grid of points from
simulated statistics 430 for a statistical test 114. The compu-
tational representation 130 may include a simulated data
structure 1910 with information for estimated CDF curves.

The data reduction generator 2220 may evaluate the simu-
lated data structure 1910 to determine whether any points in
the grid of points is removable from the simulated data struc-
ture 1910 given a target level of precision. The data reduction
generator 2220 may reduce the simulated data structure in
accordance with the evaluation to produce a reduced simu-
lated data structure 2210. The reduced simulated data struc-
ture may reduce a data storage size for the computational
representation 130.

The data reduction generator 2220 may implement a par-
allel adaptive grid enhancement (PAGE) function 2222
arranged to implement a PAGE algorithm. In one embodi-
ment, the data reduction generator 2220 may receive selec-
tion of a precision parameter to represent a target level of
precision for the simulated data structure 1910. The data
reduction generator 2220 may remove points from the simu-
lated data structure 1910 in accordance with the selected level
of precision utilizing the PAGE algorithm. The PAGE algo-
rithm may be described in more detail with reference to FIGS.
24-27, infra.

FIG. 23 illustrates one example of a logic flow 2300. The
logic flow 2300 may be representative of some or all of the
operations executed by one or more embodiments described
herein, such as the data reduction generator 2220 of the evalu-
ation component 122-4 of the simulation subsystem 120 of
the automated statistical test system 100. More particularly,
the logic flow 2300 illustrates data reduction operations to
reduce a data storage size for a computational representation
130.

As shown in FIG. 23, the logic flow 2300 may receive a
computational representation arranged to generate an
approximate probability distribution for statistics of a statis-
tical test, the computational representation to include a simu-
lated data structure with information for estimated cumula-
tive distribution function (CDF) curves for one or more
parameter vectors of the statistical test, each parameter vector
to comprise a single point in a grid of points, at block 2302.
For instance, the data reduction generator 2220 may receive
as input a computational representation 130 arranged to gen-
erate an approximate probability distribution 132 for each
point in a grid of points from simulated statistics 430 for a
statistical test 114. The computational representation 130
may include a simulated data structure 1910 with information
for estimated CDF curves.
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The logic flow 2300 may evaluate the simulated data struc-
ture to determine whether any points in the grid of points are
removable from the simulated data structure given a target
level of precision at block 2304. For example, the data reduc-
tion generator 2220 may evaluate the simulated data structure
1910 to determine whether any points in the grid of points are
removable from the simulated data structure 1910 given a
target level of precision.

The logic flow 2300 may reduce the simulated data struc-
ture in accordance with the evaluation to produce a reduced
simulated data structure having a smaller data storage size
relative to the simulated data structure, the reduced simulated
data structure to reduce a data storage size for the computa-
tional representation at block 2306. For example, the data
reduction generator 2220 may reduce the simulated data
structure 1910 in accordance with the evaluation to produce a
reduced simulated data structure 2210, where the simulated
data structure 2210 has a smaller data storage size as com-
pared to the simulated data structure 1910. The reduced simu-
lated data structure may in turn reduce a data storage size for
the computational representation 130.

FIG. 24 illustrates one example of a logic flow 2400. The
logic flow 2400 may be representative of some or all of the
operations executed by one or more embodiments described
herein, such as the data reduction generator 2220 of the evalu-
ation component 122-4 of the simulation subsystem 120 of
the automated statistical test system 100. More particularly,
the logic flow 2400 illustrates data reduction operations to
reduce a data storage size for a computational representation
130 utilizing a PAGE algorithm.

In general, the logic flow 2400 may receive a computation
representation 130 with a simulated data structure 1910 con-
taining information for estimated CDF curves, and evaluate
the simulated data structure 1910 to determine whether any
points in the grid of points are removable from the simulated
data structure given a target level of precision. The logic flow
2400 may perform the evaluation using a PAGE algorithm.
The logic flow 2400 may then reduce the simulated data
structure 1910 using evaluation results to produce a reduced
simulated data structure 2210.

As shown in FIG. 24, the logic flow 2400 may receive
various inputs for a PAGE algorithm, such as an interpolation
grid G, with M points at 2402, an interpolation grid G, with N
points at 2404, and an input table of N rows at 2406. Each row
of the input table may contain K keys and Q quantiles. The
interpolation grid G, and/or the interpolation grid G, may be
examples of an interpolation executable code 1940. The input
table at 2406 may be an example of a simulated data structure
1910.

The logic flow 2400 may receive selection of a precision
parameter to represent a target level of precision for the simu-
lated data structure. The precision parameter may be auto-
matically selected by the data reduction generator 2220 based
on a defined set of rules. Alternatively, the precision param-
eter may be selected by a user. Once selected, the PAGE
algorithm may receive as input the precision parameter, along
with other control parameters, for example, the type of inter-
polation method, as indicated at 2408.

The logic flow 2400 may remove points from the simulated
data structure in accordance with a selected level of precision
utilizing the PAGE algorithm. The PAGE algorithm may be
used to identify a set of candidate points for potential removal
from a simulated data structure. In one embodiment, for
instance, the PAGE algorithm may execute at 2410 and output
a candidate reduction data set using the interpolation grids
Gy, G,, the input table, and the one or more control param-
eters. The candidate reduction data set may be stored in a first
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output table 1 as indicated at 2412. The output table 1 may
include evaluation information. The evaluation information
may include, for example, a defined number of rows N, with
each row to include one or more each of K keys, Q explana-
tion errors on quantiles, one or more evaluation criteria, F fit
parameters, and/or one or more flags to indicate if a point p is
to remain in an interpolation grid G,.

The logic flow 2400 may perform a DATA operation 2414
to extract one or more rows from the output table 1 at 2412
based on the evaluation information to construct a second
output table 2 at 2416. For instance, output table 2 is a subset
of output table 1, and it contains the rows that should be
included in the interpolation grid G, and columns of keys and
fit parameters. Output table 2 may be an example of a reduced
simulated data structure 2210. The logic flow 2400 may uti-
lize the code generator component 122-3 at 2418 to generate
the interpolation grid G, at 2420 based on the output table 2 at
2416. The interpolation grid G, may be an example of an
interpolation executable code 1940.

In one embodiment, the PAGE algorithm may be arranged
to generate the candidate reduction data set using a “jack-
knife” evaluation technique. A jackknife evaluation tech-
nique provides information regarding whether a point may be
approximated by its neighbors for a given level of precision.
This information may be used to determine those points that
cannot be removed from the grid of points for the given level
of'precision. Once needed points are identified, the remaining
points may be stored in the candidate reduction data set. For
instance, the jackknife operation may provide information on
a relationship between precision and grid size. Table 1 illus-
trates results from a jackknife evaluation technique on all
103,780 points on the grid of points, with each point having
10,001 quantiles, for a maxF test:

TABLE 1

Quantile Jackknife Result

100%
99%
95%
90%
75%
50%
25%
10%

5%
1%
0%

0.445721510
0.007458065
0.000650852
0.000596543
0.000532891
0.000477936
0.000435499
0.000401377
0.000382148
0.000346780
0.000270918

Table 1 illustrates that less than 1% points cannot be
explained well by its neighbors when the precision require-
ment is 0.0075.

In one embodiment, a jackknife evaluation technique may
be performed in accordance with the following exemplary
procedure:

PROC HPSIMULATE
data=scbpQuantiles /* output of quantiles */
datadist=(ROUNDROBIN);
MODULE name=evaluation

ext=tkdens /* TK Extension to plug-in */

var=(key1 - key3 q0 - q10000) /* keys and quantiles */

task=2 /* Task : Evaluate performance */

taskParmN=( /*nKeys="*/3 /*EvalType=*/1 /*weightTails=*/0
[*weightA=*/-4.605 /*weightB="*/5.685
/*interpolationMethod=*/1 /*interpolationMethodParm="*/5 )

taskParmS=( /*tkExtension=*/ “imaxf” );
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-continued

OUTPUT out=scbpEvaluationJackknife;
PERFORMANCE nnodes=200 nthreads=6;
RUN.

34
reduced from 103,780 points to 7,868 points, which is 7.6%
of the simulated data structure 1910. In this manner, an
informed design decision may be made for the interpolation
source code 1930 and/or the computational representation

5 130 regarding tradeoffs between a level of precision and data
Embodiments are not limited to this example storage size, as desired for a given implementation. Embodi-
The PAGE algorithm may use results from the jackknife ments are not hml.ted in this co.nte).(t. )
evaluation technique as a basis for selectively removing In some cases, it may take significant time and computa-
points from the grid of points, estimating an approximation 1o tional resources to simulate all points with an original set of
error for interpolation, and storing the removed points in the statistics (e.g., 1 million statistics for the maxF test). To
candidate reduction data set based on the approximation reduce time and conserve computational resources, a reduced
error. The PAGE algorithm may then evaluate each point in number of statistics (e.g., 20,000 statistics for the maxF test)
the candidate reduction data set against a set of evaluation could be used for a single point, and then the PAGE algorithm
criterion until a precision parameter is satisfied. 15 may be used on the simulated points to find final grid points.
In general, the PAGE algorithm determines, given some The original set of statistics (e.g., 1,000,000) may then be
target level of precision, whether an original interpolation simulated for only the final grid points. This could be accom-
grid G, could be reduced into a smaller interpolation grid G, plished using a defined set of criteria.
without deleting any points from an interpolation grid G. For the max[F test, for example, 20,000 statistics on each of
The smal.ler interpolation gnq may result in a smaller data 20 103,780 points may be simulated, and 10,001 quantiles on
storage size for the computat.lonal representation 130 (e.g., each of 103,780 points may be generated. Assume CDF's are
DLL). An example for reducing a data storage size for the fitted with a precision of 0.0020. The average number of curve
compu.tatlonal representation 130 may be illustrated with the parameters for different precisions are shown in Table 3, as
following exemplary procedure: follows:
25
PROC HPSIMULATE TABLE3
:ﬁﬁ;ﬁi’%ﬁgg%g&f)’? of quantiles */ Precision 00050 00025 00020  0.0010
MODULE name=PAGE , Avg. # of curve 7.261 12.081 18.877  109.592
ext=tkdens /* TK Extension to plug-in */ 30 Parameters
dependent
var=(key1 - key3 q0 - q10000)/* keys and quantiles */
task=3 /* Task : Shrink the DLL size */
taskParmN=(  /*targetPrecision="/0.0007 ) Code and a DLL may be generated, and the PAGE algo-
taskParmS=(  /*G2 tkExtension="*/ “imaxf” rithm may be applied to the DLL to generate Table 4, as
follows:
TABLE 4
Precision 0.0050 0.0045 0.0040 0.0035 0.0030 0.0025 0.0020
Percentage of Points  10.6%  12.2%  14.9% 19.2% 27.3% 46.1% 87.7%

-continued

/*GO tkExtension="*/ “imaxf0” );
OUTPUT out=scbpPAGE_G1;
PERFORMANCE nnodes=200 nthreads=6;
RUN.

Embodiments are not limited to this example.

After using a PAGE algorithm according to different pre-
cisions, a grid size with corresponding levels of precision for
the maxF test may be shown in Table 2 as follows:

TABLE 2
Precision 0.0050 0.0025 0.0010 0.0007 0.0005
Grid Size 7,868 9,778 13,766 17,202 103,780
(# Points)
% of 7.6% 9.4% 13.3% 16.6% 100.0%
Original Grid

Note that the original grid (e.g., simulated data structure
1910) had 103,780 points for a precision level of 0.0005
(zmax|--T1). As indicated by Table 2, a data storage size for
the simulated data structure 1910 may be substantially
reduced when a level of precision is reduced. For instance, at
a precision level of 0.0050, the number of points may be
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Using the results shown in Table 4, assume the points
corresponding to precision of 0.0030 are selected. The origi-
nal set of statistics (e.g., 1,000,000 statistics) may be simu-
lated on each of the selected points. The defined number of
quantiles (e.g., 10,001 quantiles) on each of selected points
may be generated. The CDFs may be fitted with a precision of
0.0005. Finally code and DLL may be generated for the
selected points.

Since all points with 1,000,000 statistics are available, the
PAGE algorithm can do another evaluation, the results of
which are shown in Table 5 as follows:

TABLE 5

Quantile Estimates

100% Max 0.002834907
99% 0.000847933
95% 0.000661086
90% 0.000603617
75% Q3 0.000530835
50% Median 0.000479984
25% Q1 0.000442317

10%
5%

0.000411247
0.000394015
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TABLE 5-continued
Quantile Estimates
1% 0.000361853
0% Min 0.000265525

Various aspects of the evaluation component 122-4 in gen-
eral, and the data reduction generator 2220 and PAGE algo-
rithm in particular, may be described with reference to FIGS.
25-27, infra.

FIG. 25 illustrates one example of a logic flow 2500. The
logic flow 2500 may be representative of some or all of the
operations executed by one or more embodiments described
herein, such as the data reduction generator 2220 of the evalu-
ation component 122-4 of the simulation subsystem 120 of
the automated statistical test system 100.

The logic flow 2500 illustrates evaluation operations per-
formed in accordance with an exemplary PAGE algorithm. In
general, the PAGE algorithm determines, given some target
level of precision, whether an original interpolation grid G,
could be reduced into a smaller interpolation grid G, without
deleting any points from an interpolation grid G,. In this
example, the PAGE algorithm is implemented by the distrib-
uted computing system 610 utilizing a general/captain archi-
tecture.

As shown in FIG. 25, the logic flow 2500 may initialize an
output table on a captain node at block 2502. The output table
may store a candidate reduction data set. The logic flow 2500
may perform a jackknife operation on interpolation grid G,
with N points to find the P points not meeting the control
parameters at 2504.

The logic flow 2500 may call a subroutine MPI_Allgatherv
for execution by a general node and the captain node at block
2506. The logic flow 2500 may form an interpolation grid G,
and update flags at 2508. The interpolation grid G, may
include the interpolation grid G, plus P points.

The logic flow 2500 may interpolate all quantiles through
the interpolation grid G, against a set of evaluation criterion
until the precision parameter is satisfied. For instance, the
logic flow 2500 may evaluate N points on the interpolation
grid G, at 2510. The logic flow 2500 may call subroutines
MPI_Reduce and MPI_Bcast on the general node and/or the
captain node to broadcast a maximum criterion and the points
V to achieve a maximum criterion at 2512. The logic flow
2500 may test whether the maximum criterion is less than or
equal to a defined precision level at 2514. If the maximum
criterion is less than or equal to the defined precision level,
then the general node may call the subroutine MPI_Bcast to
indicate a parameter gDONE is set to a value of 1 at2516. The
PAGE algorithm then terminates.

If the maximum criterion is greater than the defined preci-
sion level, then the general node and/or the captain node may
call the subroutine MPI_Bcast to indicate a parameter
gDONE is set to a value of 0 and the point V at 2518. The
captain node may update the interpolation grid G, to include
the interpolation grid G, plus the points V and update the flag
at 2520. Operations at 2510, 2512, 2514, 2518 and 2520 may
be repeated until the maximum criterion is less than or equal
to a defined precision level at 2514. The PAGE algorithm then
terminates.

FIG. 26 illustrates one example of a logic flow 2600. The
logic flow 2600 may be representative of some or all of the
operations executed by one or more embodiments described
herein, such as the simulation subsystem 120 of the auto-
mated statistical test system 100. More particularly, the logic
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flow 2600 illustrates procedure for the simulation subsystem
120 to generate a computational representation 130.

As shown in FIG. 26, the logic flow 2600 may simulate
statistics by repeating, for p equals 1 to P, simulating S sta-
tistics on point p, where S is set to 20,000 and P equals a
number of all potential points (or parameter vectors), at block
2602. Block 2602 may output S by P statistics at 2614.

The logic flow 2600 may generate quantiles by repeating,
forp equals 1 to P, generating Q quantiles on point p, where Q
is set to 10,001, at block 2604. Block 2604 may output Q by
P quantiles at 2626.

The logic flow 2600 may fit CDFs by repeating, for p
equals 1 to P, fitting a curve to Q quantiles on point p with at
most F curve parameters, where F is set to 128, at block 2606.
Block 2606 may output F by P curve parameters at 2618.

The logic flow 2600 may generate C code using all P points
for grid G, and selected points for grid G, at block 2608.
Block 2608 may output two C files, four H files and two build
scripts, at 2620.

The logic flow 2600 may build a TK-Extension using a
SDSGUI to build two DLLs at block 2610. Block 2610 may
output a tkGrid2.dll and a tkGrid0.dll at 2622.

The logic flow 2600 may run PAGE algorithm for different
levels of precisions. Block 2612 outputs a table of number of
points versus a given level of precision at 2624. Control is
then passed to control location G.

FIG. 27 illustrates one example of a logic flow 2700. The
logic flow 2700 may be representative of some or all of the
operations executed by one or more embodiments described
herein, such as the simulation subsystem 120 of the auto-
mated statistical test system 100. More particularly, the logic
flow 2700 illustrates procedure for the simulation subsystem
120 to reduce a data storage size for a computational repre-
sentation 130.

As shown in FIG. 27, the logic flow 2700 may receive
control from control location G, and select a proper number of
points for the computational representation 130 at 2702. The
proper number of points may be selected by data reduction
generator 2220, and it may be an example of a reduced simu-
lated data structure 2210.

The logic flow 2700 may simulate statistics by repeating,
for p equals 1 to B, simulating S statistics on point p, where S
is set to 1,000,000 and B equals the number of selected points
(or parameter vectors), at block 2704. Block 2704 may output
S by B statistics at 2714.

The logic flow 2700 may generate quantiles by repeating,
for p equals 1 to B, generating Q quantiles on point p, where
Qissetto 10,001, at block 2706. Block 2706 may output Q by
B quantiles at 2716.

The logic flow 2700 may fit CDFs by repeating, for p
equals 1 to B, fitting a curve to Q quantiles on point p with at
most F curve parameters, where F is set to 128, at block 2708.
Block 2708 may output F by P curve parameters at 2718.

The logic flow 2700 may generate C code using all B points
for grid G, at block 2710. Block 2710 may output one C file,
two H files and one build script, at 2720.

The logic flow 2700 may build a TK-Extension using a
SDSGUI to build one DLL at block 2712. Block 2712 may
output a tkGridl.dll at 2722. The tkGridl.dll may be an
example of an interpolation executable code 1940.

FIG. 28A illustrates a block diagram for a statistical test
subsystem 140. The statistical test subsystem 140 is part of
the automated statistical test system 100. The statistical test
subsystem 140 may, for example, generate statistical signifi-
cance values for results of a statistical test using an approxi-
mate probability distribution.
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As shown in FIG. 28A, the statistical test subsystem 140
may include a statistical test application 2820 having various
components 2822-s. The statistical test application 2820 may
include a data handler component 2822-1, a statistical test
component 2822-2, and a significance generator component
2822-3. The statistical test application 2820 may include
more or less components 2822-s for other implementations.

The data handler component 2822-1 may be generally
arranged to handle data sets for use in a statistical test 114. For
instance, the data handler component 2822-1 may receive a
real data set 2810 from a client device 602. The real data set
2810 may represent actual data for analysis by the statistical
test 114, such as sets of collected business or enterprise data,
as opposed to simulated data 330 used to generate approxi-
mate probability distributions 132 for the statistical test 114.
In one embodiment, for example, the real data set 2810 may
comprise data representing one or more physical phenomena,
such as occurrences of heads or tails in a coin flip, sales of a
number of shoes in Asia, or a percentage increase or decrease
in a financial portfolio. In one embodiment, for example, the
real data set 2810 may comprise data representing one or
more measurable phenomena, which may include both physi-
cal and non-physical phenomena. An example of non-mea-
surable phenomena may include without limitation digital
data from an electronic device, such as a sensor, computer, or
characters on a display. Embodiments are not limited in this
context.

The statistical test component 2822-2 may be generally
arranged to perform the statistical test using the real data set
2810. The statistical test component 2822-2 may receive a
computation representation 130 from, for example, the simu-
lation subsystem 120. The statistical test component 2822-2
may also receive the statistical test function 112 for the sta-
tistical test 114. As previously described, the computational
representation 130 may be arranged to generate an approxi-
mate probability distribution 132 for each point in a grid of
points from simulated statistics 430 for the statistical test 114,
statistics of the statistical test 114 to follow a probability
distribution of a known or unknown form. The approximate
probability distribution function 132 may comprise an
empirical CDF, the empirical CDF to have a first level of
precision relative to the probability distribution of the known
or unknown form based on a sample size of the simulated
statistics.

The statistical test component 2822-2 may generate a set of
statistics 2824 for the statistical test 114 using the real data set
2810 and the statistical test function 112.

The significance generator component 2822-3 may be gen-
erally arranged to generate a set of statistical significance
values 2830 for the statistics 2824 generated by the statistical
test component 2822-2 using the approximate probability
distribution 132 of the computational representation 130. The
set of statistical significance values may be in the form of one
or more p-values 2832.

A p-value 2832 may generally represent a probability of
obtaining a given test statistic from observed or measurable
data, such as a test statistic obtained or evaluated from the real
data set 2810. More particularly, a p-value 2832 may repre-
sent a probability of obtaining a test statistic evaluated from
the real data set 2810 that is at least as “extreme” as one that
was actually observed, assuming the null hypothesis is true.
For instance, assume a statistical test 114 involves rolling a
pair of dice once and further assumes a null hypothesis that
the dice are fair. An exemplary test statistic may comprise
“the sum of the rolled numbers” and is one-tailed. When the
dice are rolled, assume a result where each rolled dice finally
lands and presents a side with a number 6. In this case, the test
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statistic is the sum of the rolled numbers from both dice,
which would be 12 (6+6=12). A p-value 2832 for this par-
ticular result or outcome is a probability of Y46, or approxi-
mately 0.028. The p-value 2832 of 0.028 represents the high-
est test statistic out of 6x6=36 possible outcomes. If a
significance level of 0.05 is assumed, then this result would be
deemed significant since 0.028 is lower (or more extreme)
value than 0.05. As such, the observed result of 12 from the
rolled dice would amount to evidence that could be used to
reject the null hypothesis that the dice are fair.

Once p-values 2832 are generated, the significance genera-
tor component 2822-3 may use the p-values 2832 in a number
of different ways. For instance, the significance generator
component 2822-3 may present the p-values 2832 in a user
interface view on an electronic display, an example of which
is described with reference to FIG. 28B, infra. A user may
then determine whether a null hypothesis for the statistical
test 114 is rejected based on the p-values 2832.

Additionally or alternatively, this determination may be
automatically made by the statistical application 2820. For
instance, the significance generator component 2822-3 may
compare a p-value 2832 to a defined threshold value. The
significance generator component 2822-3 may then deter-
mine whether a null hypothesis for the statistical test 114 is
rejected based on a comparison of a p-value 2832 to a defined
threshold value. The significance generator component
2822-3 may then display a conclusion from the results on the
electronic display.

FIG. 28B illustrates a user interface view 2850. The user
interface view 2850 illustrates an exemplary user interface
presenting output of a statistical test 114 in the form of a Bai
and Perron’s multiple structural change test as executed by
the statistical test application 2820.

This example illustrates how to use Bai and Perron’s mul-
tiple structural change tests and the p-values generated from
a HPSIMULATE procedure. It uses the following notations:

t: a time index

y: a dependent variable

x: an independent variable

€: an innovation

i.i.d.: independent and identically distributed

N(0,1): a standard normal distribution with mean 0 and

variance 1

Hy: a null hypothesis

H,: an alternative hypothesis

m: a number of break points in the data

supF,,,;: a sequential test for multiple structural change

proposed by Bai and Perron, where 1 is the number of
break points in the null hypothesis and 1+1 in the alter-
native hypothesis

As shown in a DATA operation 2852, labeled in the user
interface view as “data one,” the data generating process
(DGP) has two break points at time indices 60 and 140.
Precisely, the structural change model is as follows:

2+x 48,159
V=< 3+2x% +8,60=<r=<139, & ~i.id N0, 1)
3429, +&,12 140

In a PROC operation 2854, labeled in the user interface
view 2850 as “proc autoreg,” a BP=(M=3) option is set in the
AUTOREG procedure to apply Bai and Perron’s multiple
structural change tests on the data. The user interface view
2850 shows the result of supF, _, |, tests in a table 2856 anno-
tated as “Bai and Perron’s Multiple Structural Change Tests,
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supF(1+111) Tests,” which sequentially checks the null
hypothesis H,: m=1 versus the alternative null hypothesis H;:
m=1+1 for1=0, 1, 2, 3, where m is the number of break points
in the data. A statistic for each test is shown in a column 2858
and a corresponding p-value, interpolated from the DLL gen-
erated by the HPSIMULATE procedure, is shown in a column
2860. If 15% is selected as a defined threshold value (e.g., a
significance threshold), by comparing p-values to 15%, the
null hypothesis H,: m=0 and H,: m=1; are rejected. However,
the null hypothesis of H,: m=2 cannot be rejected. According
to one interpretation of these tests, there exists at least 2 break
points in the data.

For the supF1+111 test, in literature, critical values for only
four significance levels, namely 1%, 2.5%, 5%, and 10%, are
available on some parameter vectors. Hence, a user can only
make decision at those four significance levels on the finite
parameter vectors by comparing the test statistics, based on
the real data set, with the critical values available in literature.
However, with the support of HPSIMULATE system and the
DLL generated from it, the user can make decision at any
significance level of interest (e.g., 15% here) on any param-
eter vector.

FIG. 29 illustrates one example of a logic flow 2900. The
logic flow 2900 may be representative of some or all of the
operations executed by one or more embodiments described
herein, such as the statistical test subsystem 140 of the auto-
mated statistical test system 100.

As shown in FIG. 29, the logic flow 2900 may receive a
computational representation arranged to generate an
approximate probability distribution for statistics of a statis-
tical test based on a parameter vector, statistics of the statis-
tical test to follow a probability distribution at block 2902.
The probability distribution, for example, may comprise a
probability distribution of a known or an unknown form. The
logic flow 2900 may receive a real data set from a client
device, the real data set to comprise data representing at least
one measurable phenomenon or physical phenomenon at
block 2904. The logic flow 2900 may generate statistics for
the statistical test using the real data set on the parameter
vector at block 2906. The logic flow 2900 may generate the
approximate probability distribution of the computational
representation on the parameter vector at block 2908. The
logic flow 2900 may generate a set of statistical significance
values for the statistics through interpolation at block 2910 by
using the approximate probability distribution of the compu-
tational representation, the set of statistical significance val-
ues comprising one or more p-values, each p-value to repre-
sent a probability of obtaining a given test statistic from the
real data set, at block 2906.

FIG. 30 illustrates a block diagram of a centralized system
3000. The centralized system 3000 may implement some or
all of the structure and/or operations for the automated statis-
tical test system 100 in a single computing entity, such as
entirely within a single device 3020.

The device 3020 may comprise any electronic device
capable of receiving, processing, and sending information for
the automated statistical test system 100. Examples of an
electronic device may include without limitation an ultra-
mobile device, a mobile device, a personal digital assistant
(PDA), a mobile computing device, a smart phone, a tele-
phone, a digital telephone, a cellular telephone, eBook read-
ers, ahandset, a one-way pager, a two-way pager, amessaging
device, a computer, a personal computer (PC), a desktop
computer, a laptop computer, a notebook computer, a netbook
computer, a handheld computer, a tablet computer, a server, a
server array or server farm, a web server, a network server, an
Internet server, a work station, a mini-computer, a main frame
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computer, a supercomputer, a network appliance, a web
appliance, a distributed computing system, multiprocessor
systems, processor-based systems, consumer electronics,
programmable consumer electronics, game devices, televi-
sion, digital television, set top box, wireless access point, base
station, subscriber station, mobile subscriber center, radio
network controller, router, hub, gateway, bridge, switch,
machine, or combination thereof. The embodiments are not
limited in this context.

The device 3020 may execute processing operations or
logic for the automated statistical test system 100 using a
processing component 3030. The processing component
3030 may comprise various hardware elements, software ele-
ments, or a combination of both. Examples of hardware ele-
ments may include devices, logic devices, components, pro-
Cessors, MiCroprocessors, circuits, processor circuits, circuit
elements (e.g., transistors, resistors, capacitors, inductors,
and so forth), integrated circuits, application specific inte-
grated circuits (ASIC), programmable logic devices (PLD),
digital signal processors (DSP), field programmable gate
array (FPGA), memory units, logic gates, registers, semicon-
ductor device, chips, microchips, chip sets, and so forth.
Examples of software elements may include software com-
ponents, programs, applications, computer programs, appli-
cation programs, system programs, software development
programs, machine programs, operating system software,
middleware, firmware, software modules, routines, subrou-
tines, functions, methods, procedures, software interfaces,
application program interfaces (API), instruction sets, com-
puting code, computer code, code segments, computer code
segments, words, values, symbols, or any combination
thereof. Determining whether an embodiment is imple-
mented using hardware elements and/or software elements
may vary in accordance with any number of factors, such as
desired computational rate, power levels, heat tolerances,
processing cycle budget, input data rates, output data rates,
memory resources, data bus speeds and other design or per-
formance constraints, as desired for a given implementation.

The device 3020 may execute communications operations
or logic for the automated statistical test system 100 using
communications component 3040. The communications
component 3040 may implement any well-known communi-
cations techniques and protocols, such as techniques suitable
for use with packet-switched networks (e.g., public networks
such as the Internet, private networks such as an enterprise
intranet, and so forth), circuit-switched networks (e.g., the
public switched telephone network), or a combination of
packet-switched networks and circuit-switched networks
(with suitable gateways and translators). The communica-
tions component 3040 may include various types of standard
communication elements, such as one or more communica-
tions interfaces, network interfaces, network interface cards
(NIC), radios, wireless transmitters/receivers (transceivers),
wired and/or wireless communication media, physical con-
nectors, and so forth. By way of example, and not limitation,
communication media 3012, 3042 include wired communi-
cations media and wireless communications media.
Examples of wired communications media may include a
wire, cable, metal leads, printed circuit boards (PCB), back-
planes, switch fabrics, semiconductor material, twisted-pair
wire, co-axial cable, fiber optics, a propagated signal, and so
forth. Examples of wireless communications media may
include acoustic, radio-frequency (RF) spectrum, infrared
and other wireless media.

The device 3020 may communicate with other devices
3010, 3050 over a communications media 3012, 3042,
respectively, using communications information 3014, 3044,
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respectively, via the communications component 3040. The
devices 3010, 3050 may be internal or external to the device
3020 as desired for a given implementation. An example for
the devices 3010 may be one or more client devices used to
access results from the automated statistical test system 100.

FIG. 31 illustrates a block diagram of a distributed system
3100. The distributed system 3100 may distribute portions of
the structure and/or operations for the automated statistical
test system 100 across multiple computing entities. Examples
of distributed system 3100 may include without limitation a
client-server architecture, a S-tier architecture, an N-tier
architecture, a tightly-coupled or clustered architecture, a
peer-to-peer architecture, a master-slave architecture, a
shared database architecture, and other types of distributed
systems. The embodiments are not limited in this context.

The distributed system 3100 may comprise a client device
3110 and a server device 3150. In general, the client device
3110 and the server device 3150 may be the same or similar to
the client device 3020 as described with reference to FIG. 30.
For instance, the client device 3110 and the server device
3150 may each comprise a processing component 3130 and a
communications component 3140 which are the same or
similar to the processing component 3030 and the communi-
cations component 3040, respectively, as described with ref-
erence to FIG. 30. In another example, the devices 3110, 3150
may communicate over a communications media 3112 using
communications information 3114 via the communications
components 3140.

The client device 3110 may comprise or employ one or
more client programs that operate to perform various meth-
odologies in accordance with the described embodiments. In
one embodiment, for example, the client device 3110 may
implement a client application 3116 to configure, control or
otherwise manage the automated statistical test system 100.
The client application 3116 may also be used to view results
from the automated statistical test system 100, such as statis-
tical significance values or null hypothesis results. The client
application 3116 may be implemented as a thin-client spe-
cifically designed to interoperate with the automated statisti-
cal test system 100. Alternatively, the client application 3116
may be a web browser to access the automated statistical test
system 100 via one or more web technologies. Embodiments
are not limited in this context.

The server device 3150 may comprise or employ one or
more server programs that operate to perform various meth-
odologies in accordance with the described embodiments. In
one embodiment, for example, the server device 3150 may
implement the automated statistical test system 100, and any
interfaces needed to permit access to the automated statistical
test system 100, such as a web interface. The server device
3150 may also control authentication and authorization
operations to enable secure access to the automated statistical
test system 100 via the media 3112 and information 3114.

FIG. 32 illustrates an embodiment of an exemplary com-
puting architecture 3200 suitable for implementing various
embodiments as previously described. In one embodiment,
the computing architecture 3200 may comprise or be imple-
mented as part of an electronic device. Examples of an elec-
tronic device may include those described with reference to
FIG. 31, among others. The embodiments are not limited in
this context.

As used in this application, the terms “system” and “com-
ponent” are intended to refer to a computer-related entity,
either hardware, a combination of hardware and software,
software, or software in execution, examples of which are
provided by the exemplary computing architecture 3200. For
example, a component can be, but is not limited to being, a
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process running on a processor, a processor, a hard disk drive,
multiple storage drives (of optical and/or magnetic storage
medium), an object, an executable, a thread of execution, a
program, and/or a computer. By way of illustration, both an
application running on a server and the server can be a com-
ponent. One or more components can reside within a process
and/or thread of execution, and a component can be localized
on one computer and/or distributed between two or more
computers. Further, components may be communicatively
coupled to each other by various types of communications
media to coordinate operations. The coordination may
involve the uni-directional or bi-directional exchange of
information. For instance, the components may communicate
information in the form of information communicated over
the communications media. The information can be imple-
mented as information allocated to various signal lines. In
such allocations, each message is a signal. Further embodi-
ments, however, may alternatively employ data messages.
Such data messages may be sent across various connections.
Exemplary connections include parallel interfaces, serial
interfaces, and bus interfaces.

The computing architecture 3200 includes various com-
mon computing elements, such as one or more processors,
multi-core processors, CO-processors, Mmemory units,
chipsets, controllers, peripherals, interfaces, oscillators, tim-
ing devices, video cards, audio cards, multimedia input/out-
put (I/O) components, power supplies, and so forth. The
embodiments, however, are not limited to implementation by
the computing architecture 3200.

As shown in FIG. 32, the computing architecture 3200
comprises a processing unit 3204, a system memory 3206 and
a system bus 3208. The processing unit 3204 can be any of
various commercially available processors, including with-
out limitation an AMD® Athlon®, Duron® and Opteron®
processors; ARM® application, embedded and secure pro-
cessors; IBM® and Motorola® DragonBall® and Pow-
erPC® processors; IBM and Sony® Cell processors; Intel®
Celeron®, Core (2) Duo®, Itanium®, Pentium®, Xeon®,
and XScale® processors; and similar processors. Dual micro-
processors, multi-core processors, and other multi-processor
architectures may also be employed as the processing unit
3204.

The system bus 3208 provides an interface for system
components including, but not limited to, the system memory
3206 to the processing unit 3204. The system bus 3208 can be
any of several types of bus structure that may further inter-
connect to a memory bus (with or without a memory control-
ler), a peripheral bus, and a local bus using any of a variety of
commercially available bus architectures. Interface adapters
may connect to the system bus 3208 via a slot architecture.
Example slot architectures may include without limitation
Accelerated Graphics Port (AGP), Card Bus, (Extended)
Industry Standard Architecture ((E)ISA), Micro Channel
Architecture (MCA), NuBus, Peripheral Component Inter-
connect (Extended) (PCI(X)), PCI Express, Personal Com-
puter Memory Card International Association (PCMCIA),
and the like.

The computing architecture 3200 may comprise or imple-
ment various articles of manufacture. An article of manufac-
ture may comprise a computer-readable storage medium to
store logic. Examples of a computer-readable storage
medium may include any tangible media capable of storing
electronic data, including volatile memory or non-volatile
memory, removable or non-removable memory, erasable or
non-erasable memory, writeable or re-writeable memory, and
so forth. Examples of logic may include executable computer
program instructions implemented using any suitable type of
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code, such as source code, compiled code, interpreted code,
executable code, static code, dynamic code, object-oriented
code, visual code, and the like. Embodiments may also be at
least partly implemented as instructions contained in or on a
non-transitory computer-readable medium, which may be
read and executed by one or more processors to enable per-
formance of the operations described herein.

The system memory 3206 may include various types of
computer-readable storage media in the form of one or more
higher speed memory units, such as read-only memory
(ROM), random-access memory (RAM), dynamic RAM
(DRAM), Double-Data-Rate DRAM (DDRAM), synchro-
nous DRAM (SDRAM), static RAM (SRAM), program-
mable ROM (PROM), erasable programmable ROM
(EPROM), electrically erasable programmable ROM (EE-
PROM), flash memory, polymer memory such as ferroelec-
tric polymer memory, ovonic memory, phase change or fer-
roelectric  memory, silicon-oxide-nitride-oxide-silicon
(SONOS) memory, magnetic or optical cards, an array of
devices such as Redundant Array of Independent Disks
(RAID) drives, solid state memory devices (e.g., USB
memory, solid state drives (SSD) and any other type of stor-
age media suitable for storing information. In the illustrated
embodiment shown in FIG. 32, the system memory 3206 can
include non-volatile memory 3210 and/or volatile memory
3212. A basic input/output system (BIOS) can be stored in the
non-volatile memory 3210.

The computer 3202 may include various types of com-
puter-readable storage media in the form of one or more lower
speed memory units, including an internal (or external) hard
disk drive (HDD) 3214, a magnetic floppy disk drive (FDD)
3216 to read from or write to a removable magnetic disk 3218,
and an optical disk drive 3220 to read from or write to a
removable optical disk 3222 (e.g., a CD-ROM or DVD). The
HDD 3214, FDD 3216 and optical disk drive 3220 can be
connected to the system bus 3208 by a HDD interface 3224,
an FDD interface 3226 and an optical drive interface 3228,
respectively. The HDD interface 3224 for external drive
implementations can include at least one or both of Universal
Serial Bus (USB) and IEEE 1394 interface technologies.

The drives and associated computer-readable media pro-
vide volatile and/or nonvolatile storage of data, data struc-
tures, computer-executable instructions, and so forth. For
example, a number of program modules can be stored in the
drives and memory units 3210, 3212, including an operating
system 3230, one or more application programs 3232, other
program modules 3234, and program data 3236. In one
embodiment, the one or more application programs 3232,
other program modules 3234, and program data 3236 can
include, for example, the various applications and/or compo-
nents of the automated statistical test system 100.

A user can enter commands and information into the com-
puter 3202 through one or more wire/wireless input devices,
for example, a keyboard 3238 and a pointing device, such as
amouse 3240. Other input devices may include microphones,
infra-red (IR) remote controls, radio-frequency (RF) remote
controls, game pads, stylus pens, card readers, dongles, finger
print readers, gloves, graphics tablets, joysticks, keyboards,
retina readers, touch screens (e.g., capacitive, resistive, etc.),
trackballs, trackpads, sensors, styluses, and the like. These
and other input devices are often connected to the processing
unit 3204 through an input device interface 3242 that is
coupled to the system bus 3208, but can be connected by other
interfaces such as a parallel port, IEEE 1394 serial port, a
game port, a USB port, an IR interface, and so forth.

A monitor 3244 or other type of display device is also
connected to the system bus 3208 via an interface, such as a
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video adaptor 3246. The monitor 3244 may be internal or
external to the computer 3202. In addition to the monitor
3244, a computer typically includes other peripheral output
devices, such as speakers, printers, and so forth.

The computer 3202 may operate in a networked environ-
ment using logical connections via wire and/or wireless com-
munications to one or more remote computers, such as a
remote computer 3248. The remote computer 3248 can be a
workstation, a server computer, a router, a personal computer,
portable computer, microprocessor-based entertainment
appliance, a peer device or other common network node, and
typically includes many or all of the elements described rela-
tive to the computer 3202, although, for purposes of brevity,
only a memory/storage device 3250 is illustrated. The logical
connections depicted include wire/wireless connectivity to a
local area network (LAN) 3252 and/or larger networks, for
example, a wide area network (WAN) 3254. Such LAN and
WAN networking environments are commonplace in offices
and companies, and facilitate enterprise-wide computer net-
works, such as intranets, all of which may connect to a global
communications network, for example, the Internet.

When used in a LAN networking environment, the com-
puter 3202 is connected to the LAN 3252 through a wire
and/or wireless communication network interface or adaptor
3256. The adaptor 3256 can facilitate wire and/or wireless
communications to the LAN 3252, which may also include a
wireless access point disposed thereon for communicating
with the wireless functionality of the adaptor 3256.

When used in a WAN networking environment, the com-
puter 3202 can include a modem 3258, or is connected to a
communications server on the WAN 3254, or has other means
for establishing communications over the WAN 3254, such as
by way of the Internet. The modem 3258, which can be
internal or external and a wire and/or wireless device, con-
nects to the system bus 3208 via the input device interface
3242. In a networked environment, program modules
depicted relative to the computer 3202, or portions thereof,
can be stored in the remote memory/storage device 3250. It
will be appreciated that the network connections shown are
exemplary and other means of establishing a communications
link between the computers can be used.

The computer 3202 is operable to communicate with wire
and wireless devices or entities using the IEEE 802 family of
standards, such as wireless devices operatively disposed in
wireless communication (e.g., IEEE 802.11 over-the-air
modulation techniques). This includes at least Wi-Fi (or
Wireless Fidelity), WiMax, and Bluetooth™ wireless tech-
nologies, among others. Thus, the communication can be a
predefined structure as with a conventional network or simply
an ad hoc communication between at least two devices. Wi-Fi
networks use radio technologies called IEEE 802.11x (a, b, g,
n, etc.) to provide secure, reliable, fast wireless connectivity.
A Wi-Fi network can be used to connect computers to each
other, to the Internet, and to wire networks (which use IEEE
802.3-related media and functions).

FIG. 33 illustrates a block diagram of an exemplary com-
munications architecture 3300 suitable for implementing
various embodiments as previously described. The commu-
nications architecture 3300 includes various common com-
munications elements, such as a transmitter, receiver, trans-
ceiver, radio, network interface, baseband processor, antenna,
amplifiers, filters, power supplies, and so forth. The embodi-
ments, however, are not limited to implementation by the
communications architecture 3300.

As shown in FIG. 33, the communications architecture
3300 comprises includes one or more clients 3302 and servers
3304. The clients 3302 may implement the client device
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3110. The servers 3304 may implement the server device
3150. The clients 3302 and the servers 3304 are operatively
connected to one or more respective client data stores 3308
and server data stores 3310 that can be employed to store
information local to the respective clients 3302 and servers
3304, such as cookies and/or associated contextual informa-
tion.

The clients 3302 and the servers 3304 may communicate
information between each other using a communication
framework 3306. The communications framework 3306 may
implement any well-known communications techniques and
protocols. The communications framework 3306 may be
implemented as a packet-switched network (e.g., public net-
works such as the Internet, private networks such as an enter-
prise intranet, and so forth), a circuit-switched network (e.g.,
the public switched telephone network), or a combination of
a packet-switched network and a circuit-switched network
(with suitable gateways and translators).

The communications framework 3306 may implement
various network interfaces arranged to accept, communicate,
and connect to a communications network. A network inter-
face may be regarded as a specialized form of an input output
interface. Network interfaces may employ connection proto-
cols including without limitation direct connect, Ethernet
(e.g., thick, thin, twisted pair 10/100/1000 Base T, and the
like), token ring, wireless network interfaces, cellular net-
work interfaces, IEEE 802.11a-x network interfaces, IEEE
802.16 network interfaces, IEEE 802.20 network interfaces,
and the like. Further, multiple network interfaces may be used
to engage with various communications network types. For
example, multiple network interfaces may be employed to
allow for the communication over broadcast, multicast, and
unicast networks. Should processing requirements dictate a
greater amount speed and capacity, distributed network con-
troller architectures may similarly be employed to pool, load
balance, and otherwise increase the communicative band-
width required by clients 3302 and the servers 3304. A com-
munications network may be any one and the combination of
wired and/or wireless networks including without limitation a
direct interconnection, a secured custom connection, a private
network (e.g., an enterprise intranet), a public network (e.g.,
the Internet), a Personal Area Network (PAN), a Local Area
Network (LAN), a Metropolitan Area Network (MAN), an
Operating Missions as Nodes on the Internet (OMNI), a Wide
Area Network (WAN), a wireless network, a cellular net-
work, and other communications networks.

FIG. 34 illustrates an embodiment of a storage medium
3400. The storage medium 3400 may comprise an article of
manufacture. In one embodiment, the storage medium 3400
may comprise any non-transitory, physical, or hardware com-
puter readable medium or machine readable medium, such as
an optical, magnetic or semiconductor storage. The storage
medium may store various types of computer executable
instructions 3402, such as instructions to implement one or
more of the logic flows as described herein. Examples of a
computer readable or machine readable storage medium may
include any tangible media capable of storing electronic data,
including physical memory, hardware memory, volatile
memory or non-volatile memory, removable or non-remov-
able memory, erasable or non-erasable memory, writeable or
re-writeable memory, and so forth. Examples of computer
executable instructions may include any suitable type of
code, such as assembly code, source code, compiled code,
interpreted code, executable code, static code, dynamic code,
object-oriented code, visual code, compressed code, uncom-
pressed code, and the like. The embodiments are not limited
in this context.
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The computer executable instructions 3402 may be imple-
mented using one or more different types of programming
languages. A programming language is an artificial language
designed to communicate instructions to a machine, particu-
larly a computer. Programming languages can be used to
create programs that control the behavior of a machine and/or
to express algorithms. Many programming languages have
computation specified in an imperative form (e.g., as a
sequence of operations to perform), while other languages
utilize other forms of program specification such as the
declarative form (e.g., the desired result is specified, not how
to achieve it). The description of a programming language is
usually split into the two components of syntax (form) and
semantics (meaning). Some languages are defined by a speci-
fication document (e.g. the C programming language is speci-
fied by an ISO Standard), while other languages (e.g., Perl)
have a dominant implementation that is treated as a reference.

In one embodiment, for example, the computer executable
instructions 3402 may be implemented in a specific program-
ming language as developed by SAS Institute, Inc., Cary,
N.C. For instance, the computer executable instructions 3402
may be implemented in a procedure referred to as HPSIMU-
LATE, which is a procedure suitable for execution within a
SAS programming language and computing environment. In
such embodiments, the computer executable instructions
3402 may follow syntax and semantics associated with
HPSIMULATE. However, embodiments are not limited to
HPSIMULATE, and further, do not need to necessarily fol-
low the syntax and semantics associated with HPSIMU-
LATE. Embodiments are not limited to a particular type of
programming language.

The HPSIMULATE procedure dynamically loads a TK-
extension to perform statistical simulation and other tasks,
such as post-processing, optimization, and other tasks. In one
embodiment, the HPSIMULATE procedure may perform sta-
tistical simulation in distributed computing and multi-thread
environment.

The HPSIMULATE may have a syntax as follows:

PROC HPSIMULATE
DATA = SAS-data-set
DATADIST = ( COPYONGENERAL | COPYTONODES |
ROUNDROBIN | DEFAULT | INSLICES| COLUMNWISE |
COLUMNWISEBY )
NAMELEN <= number>
NOCLPRINT <= number>
DEBUGS <= number>
NTRIES = number
NOPRINT;
MODULE
EXT = name
TASK = number
DEPENDENT | CONTROLPARALLEL
TASKPARMYV | VARPARM | VAR = ( variable-list )
TASKPARMN | NUMBERPARM | TASKPARM = ( number-list )
TASKPARMS | STRINGPARM = ( quoted-string-list )
NAME = name;
OUTPUT
OUT | OUT1 = SAS-data-set
OUT2 = SAS-data-set
OUT3 = SAS-data-set
OUT4 = SAS-data-set
OUTS5 = SAS-data-set
OUT6 = SAS-data-set
OUT7 = SAS-data-set
OUTR = SAS-data-set
OUT9 = SAS-data-set
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-continued

REG | REGSTART = number;
PERFORMANCE

NODES = number
NTHREADS = number.

The options in gray font are some unnecessary options to run

the HPSIMULATE procedure, or reserved for future usage.
A set of statements and options used with the HPSIMU-

LATE procedure are summarized in the following Table 6:

TABLE 6
Description Statement Option
Data Set Options
Specify the input data set HPSIMULATE DATA =
Specify how the data are distributed HPSIMULATE DATADIST =
on grid
Write results to an output dataset ~ OUTPUT OUT =
Grid Control Options
Specify the number of captains PERFORMANCE NODES =
Specify the number of threads PERFORMANCE NTHREADS =
Task Control Options
Specify the TK-extension to MODULE EXT =
execute the tasks
Specify the task ID to be executed MODULE TASK =
Specify whether the task needsto =~ MODULE DEPENDENT
control communication between
threads and between nodes
Specify the variable names in input MODULE TASKPARMYV =
data set
Specify the number parameters MODULE TASKPARMN =
Specify the string parameters MODULE TASKPARMS =
Specify the name of the module MODULE NAME =

The HPSIMULATE procedure may use the following
statement:

PROC HPSIMULATE options.

The HPSIMULATE statement may use a first option, as
follows:

DATA=SAS-data-set.
The DATA option specifies the input data set containing
parameters for simulation or data for other tasks. I[f the DATA
option is not specified, PROC HPSIMULATE uses the most
recently created SAS data set.

The HPSIMULATE statement may use a second option, as
follows:

DATADIST=(options)
The second option specifies how data is distributed on a
distributed computing system. The second option may have a
set of options as shown in Table 7, as follows:

TABLE 7

Option Description

COPYONGENERAL  Make a copy on general.

COPYTONODES Make a copy of data set to each captain so that
each captain has all data. This is the default option.

ROUNDROBIN Distribute the data to captains row-wisely
according to round-robin rule.

DEFAULT Distribute the data to captains row-wisely
according to first-come-first-serve rule.

INSLICES Distribute the data to captains in slices.

COLUMNWISE Distribute the data to captains column-wisely and
evenly.

COLUMNWISEBY Distribute the data to captains column-wisely

according to the groups defined in the first row of
data: (1) the group ID must be integer; (2) negative

10

15

20

25

30

35

40

45

50

55

60

65

48
TABLE 7-continued

Option Description

ID indicating the corresponding columns need not
be distributed; and (3) zero ID indicating the
columns must be distributed to all captains.

The HPSIMULATE procedure may have a module state-
ment as follows:

MODULE options.
The MODULE statement specifies the TK-extension and
parameters for the task to be executed. The MODULE state-
ment may use seven options, as follows:

EXT=name

TASK= number

DEPENDENT | CONTROLPARALLEL

TASKPARMYV | VARPARM | VAR =( variable-list)
TASKPARMN | NUMBERPARM | TASKPARM = ( number-list )
TASKPARMS | STRINGPARM = ( quoted-string-list )

NAME= name

The EXT option specifies the name of the TK-extension to
execute the task. The TK-extension can focus on the task-
oriented calculation since the data I/O, communication
between client and grid and on grid, and multi-threading are
all left to the HPSIMULATE procedure. The TK-extension is
dynamically loaded in the procedure. The EXT=option must
be specified. The TK-extension must follow some protocol
defined in a virtual TK-extension which includes the struc-
tures of instance and factory of functions; in other words, any
user specified TK-extension is the “child” of that virtual TK-
extension which is called TKVRT and introduced later in the
Details section.

The TASK option specifies the task ID to be executed. The
TK-extension understands the task ID and executes the right
task. By default, TASK=option is set to zero.

The DEPENDENTICONTROLPARALLEL option speci-
fies whether the task needs to control communication
between threads and between nodes.

The TASKPARMVIVARPARMIVAR option specifies the
variables in the input data set. For example, if the input data
set contains parameters for the simulation, the variables are
the names of parameters; if the input data set is for post-
processing, the variables define the columns of data to be
dealt with. The TASKPARMYV option should be specified. If
aninput data set is not needed, a dummy data set and a dummy
variable name may be specified.

The TASKPARMNINUMBERPARMITASKPARM
option specifies the number parameters for the task. For
example, the number of simulations, the random seed to start,
the optimization grid.

The TASKPARMSISTRINGPARM option specifies the
string parameters for the task. For example, the output folder,
the output file name or prefix and suffix.

The NAME option specifies a name of the module.

The HPSIMULATE procedure may include an output
statement, as follows:

OUTPUT OUT=SAS-data-set
The OUTPUT statement creates an output SAS data set as
specifies by the following OUT option:

OUT=SAS-data-set
The OUT option names the output SAS data set containing
the task-dependent results which might be simulated statistics
or the quantiles.



US 9,208,131 B2

49
The HPSIMULATE procedure may include a performance
statement, called PERFORMANCE. The PERFORMANCE
statement is a common statement supported in a high perfor-
mance architecture (HPA) bridge. Only some options used in

the HPSIMULATE procedure are listed as follows: 5

NODES=number
The NODES option specifies a number of captains. If
NODES=0 is specified, the procedure is executed on client
side and no distributed computing environment computers
are involved.

NTHREADS=number
The NTHREADS option specifies the number of threads to be
used in each computer.

The HPSIMULATE procedure is based, in part, on the
HPLOGISTICS procedure. The framework of the HPLO-
GISTICS procedure may implement all data input/output,
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communication between client devices 602-¢ and the distrib-
uted computing system 610, or general and captain nodes of
the distributed computing system 610, and multi-threading
details. A framework extended on the framework of the
HPLOGISTICS procedure is shown in FIGS. 9-11. The
framework is flexible to support any simple and complex
algorithm. In this manner, a client application may plug-in its
own tasks, like simulation or estimation. A user’s TK-exten-
sion should follow some protocol defined in a virtual TK-
extension which includes structures of instance and factory of
functions. In other words, any user specified TK-extension is
a “child” of that virtual TK-extension which is called
TKVRT.

For the virtual TK-extension TKVRT, the user-specified
TK-extension should be a “child” of the TKVRT TK-exten-
sion. The TKVRT defines the following public structures
related to input parameters and output result:

struct TKVRT_COLUMN

/* Column name element */

name [TKVRT_MAXNAME];

/* Matrix in memory or

lity file on disk

with column names*/

/* Parameters */

{ .
int type;
int namelen;
char
tkvrtColumnPtr next;

i

struct TKVRT_DATA

uti

{
TKBoolean QinMemory;
int64_t nRow;
int64_t curRow;
int64_t nColumn;
tkvrtColumnPtr colHead;
tkvrtColumnPtr colTail;
double *mat;
tkrecUtFilePtr fid;
TKPoolh Pool;

H

struct TKVRT_PARMS

{
long nCaptains;
long captainlD;
long nThreads;
long threadID;
long task;
char taskFlag[5];
long nTaskParm;
double *taskParmList;
long nTaskParmStr;
char **taskParmStrlList;
long *taskParmStrLenList;
long nlnputData;
tkvrtDataPtr inputDatalList;
long nOutputParm;
int64_t sOutputParm;
double *outputParmList;
long nOutputInt64Parm;
int64_t sOutputInt64Parm;
int64_t *outputInt64ParmList;
long nOutputParm$Str;
char **outputParmStrList;
long *outputParmStrLenList;
long nOutputData;
tkvrtDataPtr outputDataList;
TKPoolh taskPool;
TKMemPtr userPtr;
TKMemPtr userPtrl;
TKMemPtr userPtr2;
TKMemPtr userPtr3;
TKMemPtr userPtrd;

/* is the number of captains */

/* is the current captain ID */

/* is the number of threads */

/* is the current thread ID */

/* is the task id */

/* is the task flag */

/* is the number of input number parameters */

/* is the list of input number parameters */

/* is the number of input string parameters */

/* is the list of input string parameters */

/* is the list of the length of input string parameters */
/* is the number of input data sets */

/* is the list of input data sets */

/* is the number of output number parameters */

/* is the size of allocated memory for output number parameters */
/* is the list of output number parameters */

/* is the number of output integer parameters */

/* is the size of allocated memory for output integer parameters */
/* is the list of output integer parameters */

/* is the number of output string parameters */

/* is the list of output string parameters */

5 /* is the list of the length of output string parameters */

/* is the number of output data sets */
/* is the list of output data sets */

/* is the memory Fool */

/* is the pointer to anything else */

/* is the pointer to anything else */

/* is the pointer to anything else */

/* is the pointer to anything else */

/* is the pointer to anything else */
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The function SetupThreadWork(.) in tksimt.c may provide
details on how the parameter structures are initialized.
The TKVRT also declares following public functions:

TKStatus (*ValueGet ) (tkvrtInstPtr, int, TKMemPtr, TKMem
Size *);

TKStatus (*ValueSet ) (tkvrtInstPtr, int, TKMemPtr);

TKStatus (*DestroyInstance ) (tkvrtInstPtr *);

TKStatus (*Resetlnstance ) (tkvrtInstPtr);

TKStatus (*Initialize ) (tkvrtInstPtr);

TKStatus (*Analyze ) (tkvrtInstPtr);

TKStatus (*Summarize ) (tkvrtInstPtr);

TKStatus (*GridlInitialize ) (tkvrtInstPtr);

TKStatus (*GridSummarize ) (tkvrtInstPtr, TKMemPtr);

The TKVRT are implemented in tkvrth, tkvrtmem.h,
tkvrtp.h, and tkvrt.c. An example of the child of TKVRT is
TKSCBP, which are implemented in tkscbp.h, tkscbpp.h, and
tkscbp.c, and is used to simulate multiple structural change
tests’ statistics and generate the quantiles for constructing the
empirical CDFs.

Some embodiments may be described using the expression
“one embodiment” or “an embodiment” along with their
derivatives. These terms mean that a particular feature, struc-
ture, or characteristic described in connection with the
embodiment is included in at least one embodiment. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment. Further, some embodiments may be
described using the expression “coupled” and “connected”
along with their derivatives. These terms are not necessarily
intended as synonyms for each other. For example, some
embodiments may be described using the terms “connected”
and/or “coupled” to indicate that two or more elements are in
direct physical or electrical contact with each other. The term
“coupled,” however, may also mean that two or more ele-
ments are not in direct contact with each other, but yet still
co-operate or interact with each other.

It is emphasized that the Abstract of the Disclosure is
provided to allow a reader to quickly ascertain the nature of
the technical disclosure. It is submitted with the understand-
ing that it will not be used to interpret or limit the scope or
meaning of the claims. In addition, in the foregoing Detailed
Description, it can be seen that various features are grouped
together in a single embodiment for the purpose of stream-
lining the disclosure. This method of disclosure is not to be
interpreted as reflecting an intention that the claimed embodi-
ments require more features than are expressly recited in each
claim. Rather, as the following claims reflect, inventive sub-
ject matter lies in less than all features of a single disclosed
embodiment. Thus the following claims are hereby incorpo-
rated into the Detailed Description, with each claim standing
onits own as a separate embodiment. In the appended claims,
the terms “including” and “in which” are used as the plain-
English equivalents of the respective terms “comprising” and
“wherein,” respectively. Moreover, the terms “first,” “sec-
ond,” “third,” and so forth, are used merely as labels, and are
not intended to impose numerical requirements on their
objects in all situations.

Some systems may use an open-source framework for stor-
ing and analyzing big data in a distributed computing envi-
ronment. For example, some systems may use Hadoop® for
applications in which the simulated functions depend on
given fixed data that are supplied externally to the algorithm,
and that these data can be read from distributed file systems,
such as Hadoop®. This could apply, for example, if subsets of
the data on different nodes correspond to different cases to be
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simulated. In that case, different nodes can do the simulations
for the subcases corresponding to the data that they read
locally, without need to pass data across the network. To help
make that process work, the system could adopted a map-
reduce-like pattern for controlling which nodes do which
simulations.

Some systems may use cloud computing, which canenable
ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications and services) that can be
rapidly provisioned and released with minimal management
effort or service provider interaction. Some grid systems may
be implemented as a multi-node cluster. Some systems may
use a massively parallel processing (MPP) database architec-
ture. Some systems may be used in conjunction with complex
analytics (e.g., high-performance analytics, complex busi-
ness analytics, and/or big data analytics) to solve complex
problems quickly.

What has been described above includes examples of the
disclosed architecture. It is, of course, not possible to describe
every conceivable combination of components and/or meth-
odologies, but one of ordinary skill in the art may recognize
that many further combinations and permutations are pos-
sible. Accordingly, the described architecture is intended to
embrace all such alterations, modifications and variations that
fall within the spirit and scope of the appended claims.

What is claimed is:

1. An article of manufacture comprising a non-transitory
computer-readable storage medium containing instructions
that, when executed, enable a system to:

generate simulated data for a statistical test, where statis-

tics of the statistical test are based on parameter vectors
to follow a probability distribution;

generate statistics for the parameter vectors from the simu-

lated data, each parameter vector represented with a
single point in a grid of points used for interpolation,
using a distributed computing system comprising mul-
tiple nodes each having one or more processors capable
of executing multiple threads, the simulation to occur
through distribution of portions of the simulated data or
simulated statistics across the multiple nodes of the dis-
tributed computing system in accordance with at least
one of a column-wise distribution algorithm or column-
wise-by-group distribution algorithm; and

create a computational representation arranged to generate

an approximate probability distribution for each point in
the grid of points from the simulated statistics, the
approximate probability distribution to comprise an
empirical cumulative distribution function (CDF).

2. The article of claim 1, the statistics of the statistical test
based on parameter vectors to follow a probability distribu-
tion of an unknown form.

3. The article of claim 1, the statistics of the statistical test
based on parameter vectors to follow a probability distribu-
tion of a known form.

4. The article of claim 1, further comprising instructions
that, when executed, enable a system to generate a first simu-
lated data structure comprising an ordered arrangement of
rows and columns, each row to represent a simulated statistic
for a point in the grid of points and each column to represent
a point in the grid of points, the first simulated data structure
having a first data storage size.

5. The article of claim 4, further comprising instructions
that, when executed, enable a system to distribute the first
simulated data structure by column across multiple worker
nodes of the distributed computing system.
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6. The article of claim 4, further comprising instructions
that, when executed, enable a system to generate a second
simulated data structure comprising an ordered arrangement
of'rows and columns, each row to represent a point in the grid
of points and each column to represent a quantile for each
point in the grid of points, the second simulated data structure
having a second data storage size that is smaller than the first
data storage size.

7. The article of claim 4, further comprising instructions
that, when executed, enable a system to distribute the first
simulated data structure by groups of columns across mul-
tiple worker nodes of the distributed computing system.

8. The article of claim 7, further comprising instructions
that, when executed, enable a system to distribute the first
simulated data structure by groups of columns across mul-
tiple worker nodes of the distributed computing system
according to groups defined in a control row of the first
simulated data structure.

9. The article of claim 7, further comprising instructions
that, when executed, enable a system to distribute the first
simulated data structure by groups of columns across mul-
tiple worker nodes of the distributed computing system
according to groups defined in a control row of the first
simulated data structure, the control row comprising a group
identifier to identify corresponding columns in a group, a
restriction identifier to identify corresponding columns that
do not need to be distributed, and a universal identifier to
identify corresponding columns that need to be distributed
across all worker nodes.

10. An apparatus, comprising:

processor circuitry; and

a simulated data component operative on the processor
circuitry to generate simulated data for a statistical test,
where statistics of the statistical test are based on param-
eter vectors to follow a probability distribution;

a statistic simulator component operative on the processor
circuitry to generate statistics for the parameter vectors
from the simulated data, each parameter vector repre-
sented with a single point in a grid of points, using a
distributed computing system comprising multiple
nodes each having one or more processors capable of
executing multiple threads, the statistic simulation com-
ponent to distribute portions of the simulated data or
simulated statistics across the multiple nodes of the dis-
tributed computing system in accordance with a col-
umn-wise or column-wise-by-group distribution algo-
rithm; and

a code generator component operative on the processor
circuitry to create a computational representation
arranged to generate an approximate probability distri-
bution for each point in the grid of points from the
simulated statistics, the approximate probability distri-
bution to comprise an empirical cumulative distribution
function (CDF).

11. The apparatus of claim 10, the statistic simulator com-
ponent to generate simulated statistics with the distributed
computing system, the distributed computing system com-
prising multiple data processing nodes having multi-core data
processors, with at least one of the data processing nodes
designated as a control data processing node and multiple
data processing nodes designated as worker data processing
nodes.

12. The apparatus of claim 10, the statistic simulator com-
ponent to generate simulated statistics with the distributed
computing system, the distributed computing system com-
prising multiple data processing nodes having multi-core data
processors, each data processing node comprising a distrib-
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uted control interface that executes on the data processor
associated with that data processing node and interfaces with
buffer memory also associated with that node.

13. The apparatus of claim 10, the computational represen-
tation to comprise a software component arranged for execu-
tion by the processor circuitry to generate the approximate
probability distribution for the statistical test when testing a
real data set.

14. The apparatus of claim 10, the probability distribution
to have a known form.

15. The apparatus of claim 10, the probability distribution
to have an unknown form.

16. The apparatus of claim 10, the statistic simulator com-
ponent to generate a first simulated data structure comprising
an ordered arrangement of rows and columns, each row to
represent a simulated statistic for a point in the grid of points
and each column to represent a point in the grid of points, the
first simulated data structure having a first data storage size.

17. The apparatus of claim 16, comprising a simulation
control engine to distribute the first simulated data structure
by column across multiple worker nodes of the distributed
computing system.

18. The apparatus of claim 16, the statistic simulator com-
ponent to generate a second simulated data structure compris-
ing an ordered arrangement of rows and columns, each row to
represent a point in the grid of points and each column to
represent a quantile for each point in the grid of points, the
second simulated data structure having a second data storage
size that is smaller than the first data storage size.

19. The apparatus of claim 16, comprising a simulation
control engine to distribute the first simulated data structure
by groups of columns across multiple worker nodes of the
distributed computing system.

20. The apparatus of claim 19, comprising a simulation
control engine to distribute the first simulated data structure
by groups of columns across multiple worker nodes of the
distributed computing system according to groups defined in
a control row of the first simulated data structure.

21. The apparatus of claim 19, comprising a simulation
control engine to distribute the first simulated data structure
by groups of columns across multiple worker nodes of the
distributed computing system according to groups defined in
a control row of the first simulated data structure, the control
row comprising a group identifier to identify corresponding
columns in a group, a restriction identifier to identify corre-
sponding columns that do not need to be distributed, and a
universal identifier to identify corresponding columns that
need to be distributed across all worker nodes.

22. A computer-implement method, comprising:

generating, by circuitry, simulated data for a statistical test,

the statistical test based on parameter vectors to follow a
probability distribution;

generating, by circuitry, simulated statistics for the param-

eter vectors from the simulated data, each parameter
vector represented with a single point in a grid of points,
using a distributed computing system comprising mul-
tiple nodes each having one or more processors capable
of executing multiple threads, the simulation to occur
through distribution of portions of the simulated data or
simulated statistics across the multiple nodes of the dis-
tributed computing system in accordance with a col-
umn-wise or column-wise-by-group distribution algo-
rithm; and

creating, by circuitry, a computational representation

arranged to generate an approximate probability distri-
bution for each point in the grid of points from the
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simulated statistics, the approximate probability distri-
bution to comprise an empirical cumulative distribution
function (CDF).

23. The computer-implemented method of claim 22, the
statistics of the statistical test based on parameter vectors to
follow a probability distribution of an unknown form.

24. The computer-implemented method of claim 22, the
statistics of the statistical test based on parameter vectors to
follow a probability distribution of a known form.

25. The computer-implemented method of claim 22, com-
prising generating a first simulated data structure comprising
an ordered arrangement of rows and columns, each row to
represent a simulated statistic for a point in the grid of points
and each column to represent a point in the grid of points, the
first simulated data structure having a first data storage size.

26. The computer-implemented method of claim 25, com-
prising distributing the first simulated data structure by col-
umn across multiple worker nodes of the distributed comput-
ing system.

27. The computer-implemented method of claim 25, com-
prising distributing the first simulated data structure by
groups of columns across multiple worker nodes of the dis-
tributed computing system.
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28. The computer-implemented method of claim 25, com-
prising distributing the first simulated data structure by
groups of columns across multiple worker nodes of the dis-
tributed computing system according to groups defined in a
control row of the first simulated data structure.

29. The computer-implemented method of claim 25, com-
prising distributing the first simulated data structure by
groups of columns across multiple worker nodes of the dis-
tributed computing system according to groups defined in a
control row of the first simulated data structure, the control
row comprising a group identifier to identify corresponding
columns in a group, a restriction identifier to identify corre-
sponding columns that do not need to be distributed, and a
universal identifier to identify corresponding columns that
need to be distributed across all worker nodes.

30. The computer-implemented method of claim 25, com-
prising generating a second simulated data structure compris-
ing an ordered arrangement of rows and columns, each row to
represent a point in the grid of points and each column to
represent a quantile for each point in the grid of points, the
second simulated data structure having a second data storage
size that is smaller than the first data storage size.
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